11 research outputs found

    High-resolution X-ray spectroscopy of the stellar wind in Vela X-1 during a flare

    Get PDF
    Context. We present a ~130 ks observation of the prototypical wind-accreting, high-mass X-ray binary Vela X-1 collected with XMM-Newton at orbital phases between 0.12 and 0.28. A strong flare took place during the observation that allows us to investigate the reaction of the clumpy stellar wind to the increased X-ray irradiation. Aims. To examine the wind’s reaction to the flare, we performed both time-averaged and time-resolved analyses of the RGS spectrum and examined potential spectral changes. Methods. We focused on the high-resolution XMM-Newton RGS spectra and divided the observation into pre-flare, flare, and post-flare phases. We modeled the time-averaged and time-resolved spectra with phenomenological components and with the self-consistent photoionization models calculated via CLOUDY and XSTAR in the pre-flare phase, where strong emission lines due to resonant transitions of highly ionized ions are seen. Results. In the spectra, we find emission lines corresponding to K-shell transitions in highly charged ions of oxygen, neon, magnesium, and silicon as well as radiative recombination continua (RRC) of oxygen. Additionally, we observe potential absorption lines of magnesium at a lower ionization stage and features identified as iron L lines. The CLOUDY and XSTAR photoionization models provide contradictory results, either pointing towards uncertainties in theory or possibly a more complex multi-phase plasma, or both. Conclusions. We are able to demonstrate the existence of a plethora of variable narrow features, including the firm detection of oxygen lines and RRC that RGS enables to observe in this source for the first time. We show that Vela X-1 is an ideal source for future high-resolution missions, such as XRISM and Athena.V.G. is supported through the Margarete von Wrangell fellowship by the ESF and the Ministry of Science, Research and the Arts Baden-WĂŒrttemberg. We acknowledge support from the ESTEC Faculty Visiting Scientist Programme to V.G. S.B. acknowledges financial support from the Italian Space Agency under grant ASI-INAF 2017-14-H.O. Work at LLNL was performed under the auspieces of the U.S. Department of Energy under contract No. DE-AC52-07NA27344. S.M.N. acknowledges funding by the Spanish Ministry MCIU under project RTI2018-096686-B-C21 (MCIU/AEI/FEDER, UE), co-funded by FEDER funds and by the Unidad de Excelencia MarĂ­a de Maeztu, ref. MDM-2017-0765

    Dust and gas absorption in the high mass X-ray binary IGR J16318−4848

    Get PDF
    Context. With an absorption column density on the order of 10ÂČ⁎ cm⁻ÂČ, IGR J16318−4848 is one of the most extreme cases of a highly obscured high mass X-ray binary. In addition to the overall continuum absorption, the source spectrum exhibits a strong iron and nickel fluorescence line complex at 6.4 keV. Previous empirical modeling of these features and comparison with radiative transfer simulations raised questions about the structure and covering fraction of the absorber and the profile of the fluorescence lines. Aims. We aim at a self-consistent description of the continuum absorption, the absorption edges, and the fluorescence lines to constrain the properties of the absorbing material, such as ionization structure and geometry. We further investigate the effects of dust absorption on the observed spectra and the possibility of fluorescence emission from dust grains. Methods. We used XMM-Newton and NuSTAR spectra to first empirically constrain the incident continuum and fluorescence lines. Next we used XSTAR to construct a customized photoionization model where we vary the ionization parameter, column density, and covering fraction. In the third step we modeled the absorption and fluorescence in a dusty olivine absorber and employed both a simple analytical model for the fluorescence line emission and a Monte Carlo simulation of radiative transfer that generates line fluxes, which are very close to the observational data. Results. Our empirical spectral modeling is in agreement with previous works. Our second model, the single gas absorber does not describe the observational data. In particular, irrespective of the ionization state or column density of the absorber, a much higher covering fraction than previously estimated is needed to produce the strong fluorescence lines and the large continuum absorption. A dusty, spherical absorber (modeled as consisting of olivine dust, although the nature of dust cannot be constrained) is able to produce the observed continuum absorption and edges. Conclusions. A dense, dusty absorber in the direct vicinity of the source consisting of dust offers a consistent description of both the strong continuum absorption and the strong emission features in the X-ray spectrum of IGR J16318−4848. In particular, for low optical depth of individual grains, which is the case for typical volume densities and grain size distribution models, the dust will contribute significantly to the fluorescence emission

    Dust and gas absorption in the high mass X-ray binary IGR J16318−4848

    Get PDF
    Context. With an absorption column density on the order of 10ÂČ⁎ cm⁻ÂČ, IGR J16318−4848 is one of the most extreme cases of a highly obscured high mass X-ray binary. In addition to the overall continuum absorption, the source spectrum exhibits a strong iron and nickel fluorescence line complex at 6.4 keV. Previous empirical modeling of these features and comparison with radiative transfer simulations raised questions about the structure and covering fraction of the absorber and the profile of the fluorescence lines. Aims. We aim at a self-consistent description of the continuum absorption, the absorption edges, and the fluorescence lines to constrain the properties of the absorbing material, such as ionization structure and geometry. We further investigate the effects of dust absorption on the observed spectra and the possibility of fluorescence emission from dust grains. Methods. We used XMM-Newton and NuSTAR spectra to first empirically constrain the incident continuum and fluorescence lines. Next we used XSTAR to construct a customized photoionization model where we vary the ionization parameter, column density, and covering fraction. In the third step we modeled the absorption and fluorescence in a dusty olivine absorber and employed both a simple analytical model for the fluorescence line emission and a Monte Carlo simulation of radiative transfer that generates line fluxes, which are very close to the observational data. Results. Our empirical spectral modeling is in agreement with previous works. Our second model, the single gas absorber does not describe the observational data. In particular, irrespective of the ionization state or column density of the absorber, a much higher covering fraction than previously estimated is needed to produce the strong fluorescence lines and the large continuum absorption. A dusty, spherical absorber (modeled as consisting of olivine dust, although the nature of dust cannot be constrained) is able to produce the observed continuum absorption and edges. Conclusions. A dense, dusty absorber in the direct vicinity of the source consisting of dust offers a consistent description of both the strong continuum absorption and the strong emission features in the X-ray spectrum of IGR J16318−4848. In particular, for low optical depth of individual grains, which is the case for typical volume densities and grain size distribution models, the dust will contribute significantly to the fluorescence emission

    Advances in Understanding High-Mass X-ray Binaries with INTEGRAL and Future Directions

    Get PDF
    High mass X-ray binaries are among the brightest X-ray sources in the Milky Way, as well as in nearby Galaxies. Thanks to their highly variable emissions and complex phenomenology, they have attracted the interest of the high energy astrophysical community since the dawn of X-ray Astronomy. In more recent years, they have challenged our comprehension of physical processes in many more energy bands, ranging from the infrared to very high energies. In this review, we provide a broad but concise summary of the physical processes dominating the emission from high mass X-ray binaries across virtually the whole electromagnetic spectrum. These comprise the interaction of stellar winds with the high gravitational and magnetic fields of compact objects, the behaviour of matter under extreme magnetic and gravity conditions, and the perturbation of the massive star evolutionary processes by presence in a binary system. We highlight the role of the INTEGRAL mission in the discovery of many of the most interesting objects in the high mass X-ray binary class and its contribution in reviving the interest for these sources over the past two decades. We show how the INTEGRAL discoveries have not only contributed to significantly increase the number of high mass X-ray binaries known, thus advancing our understanding of the population as a whole, but also have opened new windows of investigation that stimulated the multi-wavelength approach nowadays common in most astrophysical research fields. We conclude the review by providing an overview of future facilities being planned from the X-ray to the very high energy domain that will hopefully help us in finding an answer to the many questions left open after more than 18 years of INTEGRAL scientific observations.The INTEGRALteams in the participating countries acknowledge the continuous support from their space agencies and funding organizations: the Italian Space Agency ASI (via different agreements including the latest one, 2019-35HH, and the ASIINAF agreement 2017-14-H.0), the French Centre national d’études spatiales (CNES), the Russian Foundation for Basic Research (KP, 19-02-00790), the Russian Science Foundation (ST, VD, AL; 19-12-00423), the Spanish State Research Agency (via different grants including ESP2017-85691-P, ESP2017-87676-C5-1-R and Unidad de Excelencia MarĂ­a de Maeztu – CAB MDM-2017-0737). IN is partially supported by the Spanish Government under grant PGC2018-093741-B-C21/C22 (MICIU/AEI/FEDER, UE). LD acknowledges grant 50 OG 1902

    Advances in Understanding High-Mass X-ray Binaries with INTEGRALand Future Directions

    Get PDF
    High mass X-ray binaries are among the brightest X-ray sources in the Milky Way, as well as in nearby Galaxies. Thanks to their highly variable emissions and complex phenomenology, they have attracted the interest of the high energy astrophysical community since the dawn of X-ray Astronomy. In more recent years, they have challenged our comprehension of physical processes in many more energy bands, ranging from the infrared to very high energies.In this review, we provide a broad but concise summary of the physical processes dominating the emission from high mass X-ray binaries across virtually the whole electromagnetic spectrum. These comprise the interaction of stellar winds with the high gravitational and magnetic fields of compact objects, the behaviour of matter under extreme magnetic and gravity conditions, and the perturbation of the massive star evolutionary processes by presence in a binary system.We highlight the role of the INTEGRAL mission in the discovery of many of the most interesting objects in the high mass X-ray binary class and its contribution in reviving the interest for these sources over the past two decades. We show how the INTEGRAL discoveries have not only contributed to significantly increase the number of high mass X-ray binaries known, thus advancing our understanding of the population as a whole, but also have opened new windows of investigation that stimulated the multi-wavelength approach nowadays common in most astrophysical research fields.We conclude the review by providing an overview of future facilities being planned from the X-ray to the very high energy domain that will hopefully help us in finding an answer to the many questions left open after more than 18 years of INTEGRAL scientific observations.</p

    Dust and gas absorption in the high mass X-ray binary IGR J16318−4848

    No full text
    Context. With an absorption column density on the order of 1024 cm−2, IGR J16318−4848 is one of the most extreme cases of a highly obscured high mass X-ray binary. In addition to the overall continuum absorption, the source spectrum exhibits a strong iron and nickel fluorescence line complex at 6.4 keV. Previous empirical modeling of these features and comparison with radiative transfer simulations raised questions about the structure and covering fraction of the absorber and the profile of the fluorescence lines. Aims. We aim at a self-consistent description of the continuum absorption, the absorption edges, and the fluorescence lines to constrain the properties of the absorbing material, such as ionization structure and geometry. We further investigate the effects of dust absorption on the observed spectra and the possibility of fluorescence emission from dust grains. Methods. We used XMM-Newton and NuSTAR spectra to first empirically constrain the incident continuum and fluorescence lines. Next we used XSTA

    Astro2020 Science White Paper: The Physics of Accretion Onto Highly Magnetized Neutron Stars

    No full text
    Studying the physical processes occurring in the region just above the magnetic poles of strongly magnetized, accreting binary neutron stars is essential to our understanding of stellar and binary system evolution. Perhaps more importantly, it provides us with a natural laboratory for studying the physics of high temperature and high density plasmas exposed to extreme radiation, gravitational, and magnetic fields. Observations over the past decade have shed new light on the manner in which plasma falling at velocities near the speed of light onto a neutron star surface is halted. Recent advances in modeling these processes have resulted in direct measurement of the magnetic fields and plasma properties. On the other hand, numerous physical processes have been identified that challenge our current picture of how the accretion process onto neutron stars works. Observation and theory are our essential tools in this regime because the extreme conditions cannot be duplicated on Earth. This white paper gives an overview of the current theory, the outstanding theoretical and observational challenges, and the importance of addressing them in contemporary astrophysics research

    Advances in Understanding High-Mass X-ray Binaries with INTEGRAL and Future Directions

    No full text
    High mass X-ray binaries are among the brightest X-ray sources in the Milky Way, as well as in nearby Galaxies. Thanks to their highly variable emissions and complex phenomenology, they have attracted the interest of the high energy astrophysical community since the dawn of X-ray Astronomy. In more recent years, they have challenged our comprehension of physical processes in many more energy bands, ranging from the infrared to very high energies. In this review, we provide a broad but concise summary of the physical processes dominating the emission from high mass X-ray binaries across virtually the whole electromagnetic spectrum. These comprise the interaction of stellar winds with the high gravitational and magnetic fields of compact objects, the behaviour of matter under extreme magnetic and gravity conditions, and the perturbation of the massive star evolutionary processes by presence in a binary system. We highlight the role of the INTEGRAL mission in the discovery of many of the most interesting objects in the high mass X-ray binary class and its contribution in reviving the interest for these sources over the past two decades. We show how the INTEGRAL discoveries have not only contributed to significantly increase the number of high mass X-ray binaries known, thus advancing our understanding of the population as a whole, but also have opened new windows of investigation that stimulated the multi-wavelength approach nowadays common in most astrophysical research fields. We conclude the review by providing an overview of future facilities being planned from the X-ray to the very high energy domain that will hopefully help us in finding an answer to the many questions left open after more than 18 years of INTEGRAL scientific observations
    corecore