1,002 research outputs found

    The Canadian Patient\u27s Book of Rights: A Consumer\u27s Guide to Canadian Health Law

    Get PDF
    Well qualified lawyers rarely take time to communicate important, often vital, information to the general public about matters of law which affect their lives and their health. This attractive handbook is a welcome exception to that rule. One of Canada\u27s best known and most experienced lawyers in the medicolegal field, Lorne Rozovsky, has written a consumer\u27s guide of some 140 pages on the subject of medical and hospital patient\u27s rights under the laws. The area of law covered is what the author calls health law, one of the most exciting and fastest growing of legal specialization fields in both Canada and the United States. This volume is Mr. Rozovsky\u27s first attempt at reaching the public directly to inform them about a great variety of legal issues in general medical care, mental illness, and public health-communicable disease control. At the outset, the author cautions his readership that his book is not intended to replace the advice of a lawyer on a specific question of health law where the particular circumstances and the effects of local law must be considered. The book is intended rather to alert interested people to their rights under the law, so that they are not misled about what they can and cannot do when they are ill. Also, to help them to ask the correct questions of both their medical care-givers and their attorneys

    Assessing depression in older adults in the emergency department: Reliability of the 5-item Geriatric Depression Scale

    Get PDF
    Abstract presented at the IFA 11th Global Conference on Ageing, 28 May-1 June 2012, Prague, Czech Republi

    General Blending Models for Data From Mixture Experiments

    Get PDF
    <div><p>We propose a new class of models providing a powerful unification and extension of existing statistical methodology for analysis of data obtained in mixture experiments. These models, which integrate models proposed by Scheffé and Becker, extend considerably the range of mixture component effects that may be described. They become complex when the studied phenomenon requires it, but remain simple whenever possible. This article has supplementary material online.</p></div

    Resilience of pore-water chemistry and calcification in photosynthetic zones of calcifying sediments

    Get PDF
    Photosynthetically driven calcification was investigated in diatom‐dominated carbonate sediments from Bait Reef, Australia. Laboratory measurements conducted over complete diel cycles, using O2, pH, CO32‐, and Ca2+ microsensors, confirmed that photosynthesis and respiration drive calcification and calcium release via their respective effects on the local pH. However, the dark situation does not simply mirror the light situation. Profiles showed that calcification and calcium release are not necessarily tightly coupled to the light cycle and that mass transfer phenomena need to be considered in diel chemical dynamics. The magnitude and timing of pH and CO2{ 3 concentration changes did not simply follow the light cycle. The pH in the upper 3 mm of the sediment changed more rapidly upon illumination than upon darkening. Consequently, photosynthetically induced calcification began shortly (within 1 h) after illumination, but the pH remained elevated and calcification continued for ~7 h after darkening. Thus, calcification in marine phototrophic sediments is not limited to light periods, but may continue for extended periods after darkening. This decoupling of light, photosynthesis, and calcification has profound consequences for estimates of daily calcification rates, which have previously been made from measurements assuming close to steady states and 12 : 12 h light : dark calcification and decalcification. In Bait Reef sediments, such an assumption underestimates daily calcification rates by two‐ to threefold

    Metabolic microenvironmental control by photosynthetic biofilms under changing macroenvironmental temperature and pH conditions

    Get PDF
    Ex situ microelectrode experiments, using cyanobacterial biofilms from karst water creeks, were conducted under various pH, temperature, and constant-alkalinity conditions to investigate the effects of changing environmental parameters on cyanobacterial photosynthesis-induced calcification. Microenvironmental chemical conditions around calcifying sites were controlled by metabolic activity over a wide range of photosynthesis and respiration rates, with little influence from overlying water conditions. Regardless of overlying water pH levels (from 7.8 to 8.9), pH at the biofilm surface was approximately 9.4 in the light and 7.8 in the dark. The same trend was observed at various temperatures (4°C and 17°C). Biological processes control the calcium carbonate saturation state (Ω) in these and similar systems and are able to maintain Ω at approximately constant levels over relatively wide environmental fluctuations. Temperature did, however, have an effect on calcification rate. Calcium flux in this system is limited by its diffusion coefficient, resulting in a higher calcium flux (calcification and dissolution) at higher temperatures, despite the constant, biologically mediated pH. The ability of biological systems to mitigate the effects of environmental perturbation is an important factor that must be considered when attempting to predict the effects of increased atmospheric partial CO2 pressure on processes such as calcification and in interpreting microfossils in the fossil record

    Anodic dissolution growth of metal-organic framework HKUST-1 monitored:Via in situ electrochemical atomic force microscopy

    Get PDF
    In situ electrochemical atomic force microscopy (ec-AFM) is utilised for the first time to probe the initial stages of metal-organic framework (MOF) coating growth via anodic dissolution. Using the example of the Cu MOF HKUST-1, real time surface analysis is obtained that supports and verifies many of the reaction steps in a previously proposed mechanism for this type of coating growth. No evidence is observed however for the presence or formation of Cu2O, which has previously been suggested to be both key for the formation of the coating and a potential explanation for the anomalously high adhesion strength of coatings obtained via this methodology. Supporting in situ electrochemical Raman spectroscopy also fails to detect the presence of any significant amount of Cu2O before or during the coating's growth process

    First report of oomycetes associated with the invasive tree Parkinsonia aculeata (Family: Fabaceae)

    Get PDF
    Phytophthora species have caused the decline and dieback of multiple tree species in Australia and around the world. Dieback in invasive trees in Australia has been observed for decades, motivating research into the potential causes of dieback to be used for biological control of these invasive species. Despite wide-ranging and ongoing research into invasive plant dieback, Phytophthora species have been largely ignored as potential causal agents of dieback, with the focus more on latent fungal pathogens living as endophytes. We conducted the first survey of Phytophthora and other oomycetes to determine their association with dieback of the invasive tree, Parkinsonia aculeata L. (Fabaceae). Using zoospore baiting, we recovered 37 oomycete isolates from roots and soil of healthy and dieback-affected P. aculeata in Kununurra, Western Australia and Charters Towers, Queensland. Using molecular taxonomy, we identified ten unique oomycete taxa, predominantly composed of Phytophthora palmivora, Ph. nicotianae and Phytopythium vexans. Parkinsonia dieback occurs across multiple climatic zones including those experiencing severe drought. We recovered fewer oomycete isolates from soil and roots in drought-affected Charters Towers than Kununurra, which had experienced recent rainfall. This may be because oomycetes require soil moisture for the dispersal of zoospores. None of the genotypes identified were consistently isolated from dieback-affected trees suggesting that any association with parkinsonia dieback may be localised. More extensive surveys and pathogenicity screenings of isolated oomycetes are required to evaluate their role in the parkinsonia dieback phenomenon

    Predicting brain activation maps for arbitrary tasks with cognitive encoding models

    Get PDF
    A deep understanding of the neural architecture of mental function should enable the accurate prediction of a specific pattern of brain activity for any psychological task, based only on the cognitive functions known to be engaged by that task. Encoding models (EMs), which predict neural responses from known features (e.g., stimulus properties), have succeeded in circumscribed domains (e.g., visual neuroscience), but implementing domain-general EMs that predict brain-wide activity for arbitrary tasks has been limited mainly by availability of datasets that 1) sufficiently span a large space of psychological functions, and 2) are sufficiently annotated with such functions to allow robust EM specification. We examine the use of EMs based on a formal specification of psychological function, to predict cortical activation patterns across a broad range of tasks. We utilized the Multi-Domain Task Battery, a dataset in which 24 subjects completed 32 ten-minute fMRI scans, switching tasks every 35 s and engaging in 44 total conditions of diverse psychological manipulations. Conditions were annotated by a group of experts using the Cognitive Atlas ontology to identify putatively engaged functions, and region-wise cognitive EMs (CEMs) were fit, for individual subjects, on neocortical responses. We found that CEMs predicted cortical activation maps of held-out tasks with high accuracy, outperforming a permutation-based null model while approaching the noise ceiling of the data, without being driven solely by either cognitive or perceptual-motor features. Hierarchical clustering on the similarity structure of CEM generalization errors revealed relationships amongst psychological functions. Spatial distributions of feature importances systematically overlapped with large-scale resting-state functional networks (RSNs), supporting the hypothesis of functional specialization within RSNs while grounding their function in an interpretable data-driven manner. Our implementation and validation of CEMs provides a proof of principle for the utility of formal ontologies in cognitive neuroscience and motivates the use of CEMs in the further testing of cognitive theories
    corecore