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Abstract

We propose a new class of models providing a powerful unification and extension of ex-

isting statistical methodology for analysis of data obtained in mixture experiments. These

models, which integrate models proposed by Scheffé (1958, 1963) and Becker (1968, 1978),

extend considerably the range of mixture component effects that may be described. They be-

come complex when the studied phenomena requires it, but remain simple whenever possible.

This paper has supplementary material online.
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1 Introduction

We introduce a new class of statistical models for mixture experiments. In such experiments, the

response depends on the proportions of the mixture components, but not on the amount of the

mixture. For example, the strength of an alloy depends on the proportions of the metals of which it

is comprised. Similarly, many features of friction materials (such as their friction coefficients and

compressibilities) depend on the proportions of the chemicals from which they are made.

The common practice for analysing mixture experiments has evolved from the work of Scheffé

(1958, 1963). Scheffé suggested the canonical polynomial models, which have provided the re-

course for the majority of practitioners since, although alternatives have been proposed.
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Quenouillé (1953, 1959, 1963) demonstrated that the Scheffé polynomials are incapable of

describing common linear blending, a structure which he considers intuitively sensible. A com-

ponent blends linearly when the effect of increasing its presence in the mixture, while keeping all

other components in fixed relative proportions to each other, may be described by a linear relation-

ship. For example, this is the effect of a dilutent. In response, Becker (1968) suggested alternative

models whose terms assume such effects. Where necessary, the veracity of this assumption may

be judged by any practitioner who applies Becker’s models, but this is equally true of the con-

trasting assumption in the Scheffé polynomials. Becker (1978) proposed related developments by

introducing terms capable of describing a far broader range of effects than previously considered.

Prior to the work of Scheffé, ordinary polynomial models in mathematically independent vari-

ables (MIV) were applied to mixture experiments and such models endure, where they are deemed

appropriate. Claringbold (1955), Draper and Lawrence (1965a,b), Thompson and Myers (1968),

and Becker (1970) consider cases where the MIV are linear combinations of the component pro-

portions, while Hackler et al. (1956) and Kenworthy (1963) take the MIV to be ratios of the com-

ponent proportions. The utility of the Scheffé polynomials has been extended by Draper and John

(1977a,b) and Chen et al. (1985), who propose the use of inverse terms and logarithmic terms,

respectively, Gorman and Hinman (1962), who discuss a higher-order derivation, and Darroch and

Waller (1985), Draper and Pukelsheim (1998), Cornell (2000) and Piepel et al. (2002), who each

present useful reparameterisations. An overview of mixture experiment methodology is given by

Cornell (2002).

The terms of the existing mixture experiments models do not allow sufficient flexibility to

accommodate differences in the way the components affect the response. The joint effects, that is,

those described by terms involving two or more components, are limited. For example, existing

models have limited capability to represent rapid change in the response in certain areas of the

experimental region. As a result, models may represent the response surface inaccurately or with

a greater number of terms than necessary.
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Models that are nonlinear in parameters have not been applied to data from mixture exper-

iments, with the exception of those given by Focke et al. (2007) and Focke et al. (2012). The

models proposed by these authors have application for only a small number of components. How-

ever, there are situations where more complex models would be preferable over models providing

potentially crude polynomial approximations. The models proposed by Becker (1968, 1978) pro-

vide some of the required increased flexibility. However, these models assume linear blending, or

alternatively inactivity, of one or more components.

The class of models we propose include many of the Scheffé (1958, 1963) and Becker (1968,

1978) models as special cases. However, this class of models also encompasses other ideas for

modelling mixture experiments.

In Section 2 we summarise the main features of mixture experiments. We also discuss different

effects that mixture components may have. In Section 3 we introduce a new general class of

mixture models and discuss its relation to existing models. We focus on models with binary and

ternary blending as they are useful in practice. In Section 4 we show that choosing the appropriate

model for a specific study and its estimation can be combined, thus leading to a simple model

selection procedure that can be implemented using many statistical packages. This is demonstrated

with a simulated example, chosen to illustrate a situation when the new models provide excellent

fit of the data, while the standard models do not. The dataset and computer code implementing the

analysis are available as supplementary material on the journal’s website. We conclude the paper

with a discussion of the advantages and limitations of the new methodology.
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2 Mixture experiments

In mixture experiments the response of interest,y, is dependent on the proportions of theq mixture

componentsxi , i = 1, . . . , q, such that

q∑

i=1

xi = 1, xi ≥ 0. (1)

The unconstrained composition space of the experiment is the (q−1)− dimensional simplex. How-

ever, individual component lower and upper bounds, linear multicomponent constraints, and non-

linear constraints (Atkinson et al., 2007, p.230) often apply.

Scheffé (1958) proposes the use of{q,m} symmetric canonical polynomial models obtained

by reparameterisation of standard polynomials of degreem for q components by using (1). The

quadratic (S2), cubic (S3) and special cubic (SSC3) Scheffé polynomials for mixtures are

E[y] =
q∑

i=1

βi xi +

q∑

i, j

βi j xi xj , (2)

E[y] =
q∑

i=1

βi xi +

q∑

i< j

βi j xi xj +

q∑

i< j

γi j xi xj(xi − xj) +
q∑

i< j<k

βi jk xi xj xk, (3)

and

E[y] =
q∑

i=1

βi xi +

q∑

i< j

βi j xi xj +

q∑

i< j<k

βi jk xi xj xk, (4)

respectively, whereβ1, β2, . . . , γ12, γ13, . . . are the parameters that must be estimated using the data.

As an alternative to the quadratic Scheffé polynomial, Piepel et al. (2002) suggest partial

quadratic mixture (PQM) models, which are reduced forms of the model

E[y] =
q∑

i=1

βi xi +

q∑

i< j

βi j xi xj +

q∑

i=1

βii x
2
i , (5)

where up toq(q− 1)/2 terms of binary joint effectsxi xj (i , j) or square termsx2
i are included in

the model in addition to the linear terms.
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A full PQM model provides a fit equivalent to the full quadratic Scheffé polynomial. However,

a reduced PQM model, containing squared terms, may prove more parsimonious than reduced

quadratic Scheffé polynomials (e.g., when one or more components have strong quadratic curvature

effects). This may equivalently be said to be the case for the models proposed by Draper and

Pukelsheim (1998).

Becker (1968) introduces models that allow for describing linear blending:

H1 : E[y] =
q∑

i=1

βi xi +

q∑

i< j

βi j min
(
xi , xj

)
+

q∑

i< j<k

βi jk min
(
xi , xj , xk

)
+ . . . , (6)

H2 : E[y] =
q∑

i=1

βi xi +

q∑

i< j

βi j
xi xj

xi + xj
+

q∑

i< j<k

βi jk
xi xj xk

xi + xj + xk
+ . . . , (7)

and

H3 : E[y] =
q∑

i=1

βi xi +

q∑

i< j

βi j
√

xi xj +

q∑

i< j<k

βi jk
3
√

xi xj xk + . . . . (8)

Reports of applications of these models include those of Becker (1968), Snee (1973), Johnson and

Zabik (1981), Chen et al. (1996) and Cornell (2002), among others, most of whom demonstrate

them to be advantageously used in comparison to Scheffé polynomials.

Becker (1978) progressed to propose the general model form,

E[y] =
q∑

i=1

βi xi +

q∑

i< j

h
(
xi , xj

) (
xi + xj

)
+

q∑

i< j<k

h
(
xi , xj , xk

) (
xi + xj + xk

)
+ . . . (9)

of which the H2 and H3 models are each a special case, whereh () are each homogenous of de-

gree zero, that is, their effect remains consistent for all valuesxi + xj, wherexi andxj remain in

fixed relatively proportion, and similarlyxi + xj + xk, wherexi, xj andxk remain in fixed relative

proportions. Reduced forms of this model form allow the linear blending effect of one (or more)

components on the response to be described. This is useful when one or more components has an

additive effect on the response, such as a dilutent. Becker suggested the nonlinear terms

h
(
xj , ..., xk

)
=

k∏

i< j

(
xi

xj + . . . + xk

)ri

(10)
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which potentially provide greater flexibility in joint effects of the components. However, he gives

little guidance on how these nonlinear parameters could be utilised, nor does he consider their

estimation.

As described so far, the full statistical model chosen for a particular study may have too many

terms describing joint effects, particularly if the number of components is large. Often only a

subset of them will be needed. Stepwise regression (Efroymson, 1965) can be applied to achieve

this.

3 Model generalisation

The linear (in the parameters) models discussed thus far will describe well situations where their

terms accommodate the specific joint effects of the mixture components. However, their terms

do not accommodate particular non-additive effects and this could lead them to perform poorly.

They may not adequately represent the response or do so in a manner detrimental to model parsi-

mony. This section proposes a general class of models which can represent responses of mixtures

whose components have a wide range of different effects. We first discuss joint effects of two

components and then extend the presented ideas to three components. The joint effects of more

than three components are rarely considered when modelling mixture experiments using existing

methodology and therefore are not considered here. We start by describing an idea for combining

and generalising standard binary blending models.

3.1 Motivation

The models

E[y] =
q∑

i=1

βi xi + βi j xi xj (11)
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and

E[y] =
q∑

i=1

βi xi + βi j
xi xj

xi + xj
, (12)

where 1≤ i, j ≤ q, i , j, characterise the response surface in contrasting ways with respect

to the joint effect of xi and xj. While (12) allows an additive blending effect through the linear

blending of Becker’s (1968) H2 model, (11) utilises the quadratic blending effect of the Scheffé

polynomial. This contrast can be seen along any ray wherexi and xj remain in a fixed relative

proportion. Models (11) and (12) differ by the form of their last term. Where more than one pair

of mixture components demonstrate joint effects, the best model fit may be achieved where the

blending effect of the term in (11) is used for one pair of components and that of the term in (12)

for another (Johnson and Zabik, 1981).

Firstly, a generalised binary blending effect is defined by introducing the parametersi j in the

model

E[y] =
q∑

i=1

βi xi + βi j

(
xi

xi + xj

) (
xj

xi + xj

) (
xi + xj

)si j
. (13)

The generalised binary blending term in (13) could be mathematically reduced to the formxi xj(xi+

xj)
s∗i j , but it is written that way to more easily see subsequently that the Scheffé and Becker H2

models are special cases.

The blending effects corresponding to five different values ofsi j (si j = 0.2, 0.5, 1, 2, 5) are

shown in Figure 1. Note that increasingsi j above 1 results in a term whose effect is very small

asxi + xj approaches zero, while reducingsi j toward 0 results in a term whose impact decreases

rapidly asxi + xj approaches zero.

Further flexibility can be added by introducingri j andr ji to the model, which gives

E[y] =
q∑

i=1

βi xi + βi j

(
xi

xi + xj

)ri j
(

xj

xi + xj

)r ji (
xi + xj

)si j
, (14)
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where, if si j = 1, this is a reduced form of (9) with only one term of joint effect. Model (14) is

linear in the parametersβi j for any values of the parameterssi j , ri j , r ji that define the form of the

terms.

This concept can be extended to introduce a general ternary joint effect in the model:

E[y] =
q∑

i=1

βi xi + βi jk

(
xi

xi + xj + xk

)ri jk
(

xj

xi + xj + xk

)r jki

×

(
xk

xi + xj + xk

)rki j (
xi + xj + xk

)si jk
. (15)

Here, the joint effect of thexi, xj and xk is governed bysi jk , ri jk , r jki, rki j and the corresponding

βi jk . In particular,si jk governs the blending effect betweenxi, xj andxk and the remainder of the

mixture, in an analogous manner tosi j above. Thus, contrasting effects may be seen along any ray

wherexi, xj andxk remain in fixed relative proportions. The new terms for the binary and ternary

cases are referred to as generalised terms of binary and ternary joint effects.

Model (14) may alternatively be expressed as

E[y] =
q∑

i=1

βi xi + βi j

(
xi

xi + xj

)gi j hi j
(

xj

xi + xj

)gji (1−hji ) (
xi + xj

)si j
, (16)

wheregi j hi j = ri j andgi j

(
1− hi j

)
= r ji , so thatgi j = ri j + r ji andhi j = ri j/gi j . This allows us to

better interpret the effectsri j andr ji through constrained values ofhi j , gi j andgji , where 0≤ hi j ≤ 1,

gi j > 0 andgji > 0.

The interpretation ofgi j , gi j , andhi j may be understood, without loss of generality, along the

edge wherexi + xj = 1. Firsthi j describes location, that is the point of greatest departure from

linearity, withhi j = 0.5 indicating a symmetrical effect. Meanwhile,gi j defines the localisation of

the effect, wheregi j � 1 indicates a joint effect contained to a region localised about the point of

greatest departure from linearity. In contrast, wheregi j � 1, the effect of the term changes little

around this point but instead causes rapid change asxi/(xi + xj) approaches 0 and 1. The effect

of the term is proportional toxgi j hi j

i x
gi j(1−hi j)
j . To illustrate the way the shape changes withxi (or

conversely with 1− xj), the effects forgi j = 20 andgi j = 0.2 are shown in Figure 2 forhi j = 0.75.

A general binary term has no effect whenxi/(xi+xj) or xj/(xi+xj) approaches zero. Whenhi j =

1 (or conversely,hi j = 0) the general binary blending term has greater significance asxi/(xi + xj)
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approaches 1, andxi dominates the effect. The manner in which this occurs is governed bygi j .

For values ofgi j > 1 the term becomes increasingly influential at an increasingly rapid rate as

xi/(xi + xj) approaches 1. For values ofgi j < 1 the term becomes increasingly influential at a

decreasingly rapid rate. The impact of the term diminishes for larger values ofgi j . The parameter

βi j sets the magnitude of the effect given its specification bysi j , gi j andhi j .

Similar analysis may be made of the general term for a ternary joint effect. Model (15) may

alternatively be expressed

E[y] =
q∑

i=1

βi jk xi xj xk

(
xi

xi + xj + xk

)gi jkhi jk
(

xj

xi + xj + xk

)gi jkhjki

×

(
xk

xi + xj + xk

)gi jk(1−hi jk−hjki) (
xi + xj + xk

)si jk
,

wheregi jk = ri jk + r jki + rki j, hi jk = ri jk/gi jk , hjki = r jki/gi jk , gi jkhi jk = ri jk , gi jkhjki = r jki and

gi jk

(
1− hi jk − hjki

)
= rki j. The new terms for the generalised ternary effects can be interpreted in a

similar way as the generalised binary effects discussed earlier, without loss of the generality, as the

effect of the term across the two-dimensional simplex wherexi + xj + xk = 1. The parametershi jk

andhjki describe the location of the point of greatest departure from linearity, withhi jk = hjki = 1/3

indicating a rotationally symmetrical effect, whilegi jk once again describes the localisation of the

effect about that point.
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3.2 General Blending Mixture Models

We propose a class of Generalized Blending Mixture (GBM) models, forq components, of the

form

E[y] =
q∑

i=1

βi xi

+
∑

i< j

βi j

(
xi

xi + xj

)ri j
(

xj

xi + xj

)r ji (
xi + xj

)si j

+
∑

i< j<k

βi jk

(
xi

xi + xj + xk

)ri jk
(

xj

xi + xj + xk

)r jki

×

(
xk

xi + xj + xk

)rki j (
xi + xj + xk

)si jk
. (17)

In the second and third sums, we have
(
q
2

)
and

(
q
3

)
terms, respectively. Although one could have

multiple terms involving the same variables with different powers, we do not consider this.

As discussed earlier, the GBM models can also be reparametrised as

E[y] =
q∑

i=1

βi xi

+
∑

i< j

βi j

(
xi

xi + xj

)gi j hi j
(

xj

xi + xj

)gji (1−hi j ) (
xi + xj

)si j

+
∑

i< j<k

βi jk

(
xi

xi + xj + xk

)gi jkhi jk
(

xj

xi + xj + xk

)gjkihjki

×

(
xk

xi + xj + xk

)gki j (1−hi jk−hjki ) (
xi + xj + xk

)si jk
. (18)

Models (17) and (18) may be used to establish a broad range of joint effects. In fact, many mod-

els presented in the literature are special cases of our class of models. For example, the quadratic

crossproduct terms in the Scheffé polynomial or the PQM model, occur whenhi j = 0.5, gi j = 2 and

si j = 2. The squared terms in the PQM model occur whenhi j = 0, gi j = 2 andsi j = 2. The binary
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blending terms of Becker’s H2 and H3 models occur whenhi j = 0.5, si j = 1 andgi j = 2 or 1,

respectively. Furthermore the ternary term of the special cubic model occurs whenhi jk = hjim = 1
3,

gi jk = 3 andsi jk = 3. Thus, the GBM model allows us to consider commonly used terms, as well

as new terms, with considerable flexibility.

4 Model selection

Model (17) is complex, being a nonlinear function of some of its parameters. Its estimation is

difficult but possible. However, in most cases it is unnecessary to estimate all its parameters si-

multaneously. When the parametersri j , r ji , si j , ri jk , r jik andsi jk are specified, the estimation of the

remaining parameters of (17) becomes trivial as the resulting models are linear in the parameters.

Therefore a sensible alternative to estimating (17) is to choose a model from a list of models that

includes traditional models as well as new GBM models obtained for a grid of values forri j , r ji ,

si j , ri jk , r jik andsi jk . The model selection criterion

AICc = 2pn/(n− p+ 1)− 2log(L) (19)

is used, whereL is the likelihood function andp is the number of the parameters of the estimated

model.

There are various ways of implementing such a comparison. The results presented here were

obtained by a forward selection stepwise regression procedure, i.e. by fitting first the model includ-

ing the effects of the individual mixture components and then sequentially adding the best possible

term representing joint action of two or three components, defined by all possible values ofri j , r ji ,

si j , ri jk , r jik andsi jk and judged by the AICc criterion. The fitting was terminated when the models

became unnecessarily complicated. The computer implementation was done with the free software

package R using theAICc function of the libraryAICcmodavg(Mazerolle, 2013). The computer

program is provided as supplementary material.
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Most published datasets obtained in mixture experiments are provided with satisfactory statis-

tical analyses using standard models. Fitting GBM models to such data therefore usually brings

modest benefits, which is not surprising. Furthermore, the experimental designs used in such stud-

ies often do not allow for fitting the GBM models, as they either have too few observations or their

location in the design region does not allow the estimation of some of the model parameters. This

is why in order to illustrate the features of the new models, data were simulated for a scenario

where their advantages in comparison with standard models could be seen. Certainly, this is not

a typical case and in most practical situations the differences seen in this example are likely to be

considerably smaller.

Example. This example involves three mixture components with their proportions varying from 0

to 1. The response surface for this example was chosen to be asymmetric, but ordinary, see Figure

3. The maximum of the response was attained by a combination of a large proportion ofx1 and

similar but small proportions of the remaining componentsx2 andx3. However the joint effect of

the mixture components was strong. This was achieved by using the model

E
[
y
]
= 3x1 + 4x2 + 5x3 + 20x1x3

2 + 80
x2.5

1 x0.5
2 x0.5

3

x1 + x2 + x3
. (20)

The data were generated for the 22-trial, 3-component simplex lattice design with an additional

centroid point shown in Figure 4. Independent and normally distributed random errors with homo-

geneous variance equal to 0.252 were added to the model-calculated values to yield the simulated

data.

The best GBM model with four terms was chosen by comparing all possible models obtained

by adding to the model having just three terms, i.e.

E[y] =
3∑

i=1

βi xi ,
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a single term of joint action. There were four types of terms to consider adding:βi j

(
xi

xi+xj

)ri j
(

xj

xi+xj

)r ji
(
xi + xj

)si j
,

for i = 1, j = 2; i = 1, j = 3; andi = 2, j = 3; andβ123x
r123
1 xr231

2 xr312
3 , where the last term simplified

from that in (17) asx1 + x2 + x3 = 1. Each of these terms was considered for all possible combi-

nations of the values 0.5, 1, 1.5, 2, 2.5 or 3 forr12, r13, r23, r123, r231 andr312 and the values 0, 1,

2 or 3 for s12, s13 ands23. Hence, 3(4∗ 62) + 63 = 648 models were considered. The model with

smallest AICc was chosen. It included a term representing binary blending for the componentsx1

andx2.

The best GBM model with five terms was chosen by comparing all models obtained by adding

one more term to the best GBM model with four terms. The list of models to compare was obtained

in the same way as that used to obtain the best GBM model with four terms. At this stage a term

representing ternary blending for the components was included.

The same approach was used again to obtain the best GBM model with six and then, with

seven terms. The terms that were added represented binary blending for componentsx1 andx3 and

for componentsx2 and x3, respectively. As expected, the model with seven terms had the same

structure as (17).

It may be beneficial to use different blending terms for the same components only in very rare

situations. If this possibility is excluded in the model selection, it becomes faster as the number of

models to consider becomes smaller as more terms are added to the model.

The full Scheffé cubic polynomial (3), Becker’s models H2 (7) and H3 (8) were also fitted to

the data. Their AICc statistics, as well as those for the best GBM models with three, four, five, six

and seven terms, are given in Table 1.

The GBM model with five terms had a smaller AICc statistic than those for the GBM models

with three, four, six or seven terms, and was overall the best model. This model is

(21)
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where the figures in the brackets are the standard deviations of the estimates of the parameters

that precede them. The AICc value for this model is 9.91 and compares rather favourably with the

corresponding values for the fitted full Scheffé cubic polynomial and Becker’s H2 and H3 models

for which it is 95.85, 80.53 and 78.72, respectively. While we emphasise that such advantageous

differences in favour of the GBM models are not typical, this example shows that for certain studied

phenomena they can be achieved.

The contour plots of the predicted surfaces with the full Scheffé cubic polynomial and the

selected GBM model are shown in Figures 5 and 6. It can be seen that the estimated response

surfaces of the GBM model was very similar to the true response surface shown in Figure 3. This

cannot be said for the estimated full Scheffé cubic polynomial as its estimated response surface is

notably different from the true surface.

Using a grid with a larger number of possible values forr12, r13, r23, r123, r231, r312, s12, s13 and

s23 was attempted but did not bring any benefits. It was felt that the reason for that was that the

amount of simulated data was not sufficiently large to allow to distinguish between models with

such small differences of the values of the nonlinear parameters. However, as different models were

found, some with structures somewhat different to that of the true model, they all produced predic-

tions which would be considered indistinguishable in a practical application and well representing

the underlying relationship.

5 Discussion

The general class of models that we propose provide a powerful unification and extension of the

existing statistical methodology for analysis of data obtained in mixture experiments. The com-

plexity of the models fitted to the data will closely match the complexity of the studied phenomena:

they will be models equivalent to those proposed by Scheffé (1958, 1963), Becker (1968) and (Pie-

pel et al., 2002) when possible, but more complex when needed. The main benefits of using GBM

14
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models are that they are parsimonious and can accurately describe response surfaces in situations

where sometimes standard models will offer only a crude and possibly even misleading approxi-

mation.

Estimating simultaneously all parameters of the GBM models (17) would require a substantial

computational effort. The authors have made considerable progress in developing a computational

tool capable of doing this, though its discussion remains outside the scope of the presented re-

search. However, the method of choosing a GBM model proposed in this paper is effective, simple

and computationally stable, thus it is good for its purpose.

The development of the general class of mixture models naturally creates the need to re-

evaluate the usefulness of the standard and computer generated experimental designs for mixture

experiments. It is clear that fitting GBM models requires more data than fitting any of the standard

models. It is possible to use space-filling experimental designs, collecting as much data as the

available resources allow for. Such designs have been explored, for example, by Fang and Wang

(1994); Borkowski and Piepel (2009) and Ning et al. (2011). Further work aiming to formulate

a better experimental design strategy for estimating the class of general blending mixture models

that takes into account their structure is underway.

Supplementary material

Data and Code: The simulated dataset used in the example in Section 4 of the paper, along with R

code to perform the analysis (zip folder).
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Model Scheffé H2 H3 GBM GBM GBM GBM GBM
Terms 10 7 7 3 4 5 6 7
AICc 95.85 80.53 78.72 80.60 45.53 9.91 10.49 11.81

Table 1:AICc statistics for models fitting the simulated data.
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Figure 1: Blending effects forsi j = 0.2,0.5,1,2 and 5.
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Figure 2: Binary blending effects forgi j = 0.2 and 20.
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Figure 3: Contour plot for the underlying model.
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Figure 4: Plot of design for simulated data.
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Figure 5: Prediction contour plot for Scheffé special cubic model fit to the simulated data.

24
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
M

an
ch

es
te

r 
L

ib
ra

ry
] 

at
 0

2:
27

 2
6 

Ju
ne

 2
01

5 



ACCEPTED MANUSCRIPT

Figure 6: Prediction contour plot for GBM model fit to the simulated data.
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