98 research outputs found

    Temperature dependent ultracold neutron transmission in D2 gas − a test of the Young-Koppel model

    Get PDF
    The Young-Koppel model (YK) describes comprehensively the interaction of slow neutrons with diatomic gases such as H2_2 and D2_2. This paper reports on the first experimental results of ultracold neutron (UCN) scattering over a wide temperature range vindicating the YK model for gaseous D2_2 and showing an important difference in the temperature dependence to a low-energy low-temperature approximation (LETA). LETA is confirmed, however, to be valid for monoatomic gases such as Ne. Calculated cross sections for other noble gases were also confirmed for ultracold neutrons. Finally, the total cross section of UCNs in H2_2 gas was measured and analyzed applying the Young-Koppel model, however, in a more limited temperature range, confirming the theoretical prediction

    Time-of-flight spectroscopy of ultracold neutrons at the PSI UCN source

    Full text link
    The ultracold neutron (UCN) source at the Paul Scherrer Institute (PSI) provides high intensities of storable neutrons for fundamental physics experiments. The neutron velocity spectrum parallel to the beamline axis was determined by time-of-flight spectroscopy using a neutron chopper. In particular, the temporal evolution of the spectrum during neutron production and UCN storage in the source storage volume was investigated and compared to Monte Carlo simulation results. A softening of the measured spectrum from a mean velocity of 7.7(1) m s−1^{-1} to 5.1(1) m s−1^{-1} occurred within the first 30 s after the proton beam pulse had impinged on the spallation target. A spectral hardening was observed over longer time scales of one measurement day, consistent with the effect of surface degradation of the solid deuterium moderator

    Characterization of ultracold neutron production in thin solid deuterium films at the PSI UCN source

    Full text link
    We determined the ultracold neutron (UCN) production rate by superthermal conversion in the solid deuterium (sD2_2) moderator of the UCN source at the Paul Scherrer Institute (PSI). In particular, we considered low amounts of less than 20 20\,mol of D2_2, deposited on the cooled moderator vessel surfaces in thin films of a few mm thickness. We measured the isotopic (cHD<0.2 % c_\text{HD} < 0.2 \, \% ) and isomeric (cpara≀2.7 % c_\text{para} \le 2.7 \, \% ) purity of the deuterium to conclude that absorption and up-scattering at 5 5\,K have a negligible effect on the UCN yield from the thin films. We compared the calculated UCN yield based on the previously measured thermal neutron flux from the heavy water thermal moderator with measurements of the UCN count rates at the beamports. We confirmed our results and thus demonstrate an absolute characterization of the UCN production and transport in the source by simulations

    An Improved Neutron Electric Dipole Moment Experiment

    Full text link
    A new measurement of the neutron EDM, using Ramsey's method of separated oscillatory fields, is in preparation at the new high intensity source of ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland (PSI). The existence of a non-zero nEDM would violate both parity and time reversal symmetry and, given the CPT theorem, might lead to a discovery of new CP violating mechanisms. Already the current upper limit for the nEDM (|d_n|<2.9E-26 e.cm) constrains some extensions of the Standard Model. The new experiment aims at a two orders of magnitude reduction of the experimental uncertainty, to be achieved mainly by (1) the higher UCN flux provided by the new PSI source, (2) better magnetic field control with improved magnetometry and (3) a double chamber configuration with opposite electric field directions. The first stage of the experiment will use an upgrade of the RAL/Sussex/ILL group's apparatus (which has produced the current best result) moved from Institut Laue-Langevin to PSI. The final accuracy will be achieved in a further step with a new spectrometer, presently in the design phase.Comment: Flavor Physics & CP Violation Conference, Taipei, 200

    Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins

    Get PDF
    Physics at the Planck scale could be revealed by looking for tiny violations of fundamental symmetries in low energy experiments. In 2008, a sensitive test of the isotropy of the Universe using has been performed with stored ultracold neutrons (UCN), this is the first clock-comparison experiment performed with free neutrons. During several days we monitored the Larmor frequency of neutron spins in a weak magnetic field using the Ramsey resonance technique. An non-zero cosmic axial field, violating rotational symmetry, would induce a daily variation of the precession frequency. Our null result constitutes one of the most stringent tests of Lorentz invariance to date.Comment: proceedings of the PNCMI2010 conferenc

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    Measurement of the permanent electric dipole moment of the neutron

    Get PDF
    We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}

    Old Questions and New Evidence from Social Sequence Analysis

    Get PDF
    In what ways do dual-earner couples organize their workdays and how do they (de)synchronize their daily activities? Using a multichannel sequence analysis approach, the paper tackles these questions. We consider the couples' division of work-family activities in holistic terms by setting it within the context of everyday life, that is, the overall temporal pattern of combination of His and Her multiple activities. Our multichannel sequence analysis approach is based on a Lexicographic Index that seeks to overcome some optimal matching limits of the sequence analysis. The case-study concerns how Italian dual-earner couples organize their daily activities (sleep, personal care, work, moving, housework, free time), during a typical Monday to Friday work day, 7.00 am to 10.00 pm. The analysis, carried out using the data from the 2008 Italian Census on Time Use (the last one available), involves 873 couples where both partners filled the given diaries on the very same day. All the analyses confirm the idea that dual-earner couples package their life time mainly in accordance with their jobs and eventual children management. Moreover, the analyses show that this time packaging changes in relation to the level of education, social class and the occupational sector of the couple

    The very large n2EDM magnetically shielded room with an exceptional performance for fundamental physics measurements.

    Get PDF
    We present the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute, which features an interior cubic volume with each side of length 2.92 m, thus providing an accessible space of 25 m3. The MSR has 87 openings of diameter up to 220 mm for operating the experimental apparatus inside and an intermediate space between the layers for housing sensitive signal processing electronics. The characterization measurements show a remanent magnetic field in the central 1 m3 below 100 pT and a field below 600 pT in the entire inner volume, up to 4 cm to the walls. The quasi-static shielding factor at 0.01 Hz measured with a sinusoidal 2 ÎŒT peak-to-peak signal is about 100 000 in all three spatial directions and increases rapidly with frequency to reach 108 above 1 Hz

    Search for an interaction mediated by axion-like particles with ultracold neutrons at the PSI

    Get PDF
    We report on a search for a new, short-range, spin-dependent interaction using a modified version of the experimental apparatus used to measure the permanent neutron electric dipole moment at the Paul Scherrer Institute. This interaction, which could be mediated by axion-like particles, concerned the unpolarized nucleons (protons and neutrons) near the material surfaces of the apparatus and polarized ultracold neutrons stored in vacuum. The dominant systematic uncertainty resulting from magnetic-field gradients was controlled to an unprecedented level of approximately 4 pT/cm using an array of optically-pumped cesium vapor magnetometers and magnetic-field maps independently recorded using a dedicated measurement device. No signature of a theoretically predicted new interaction was found, and we set a new limit on the product of the scalar and the pseudoscalar couplings gsgpλ2<8.3×10−28 m2g_sg_p\lambda^2 < 8.3 \times 10^{-28}\,\text{m}^2 (95% C.L.) in a range of 5 Όm<λ<25 mm5\,\mu\text{m} < \lambda < 25\,\text{mm} for the monopole-dipole interaction. This new result confirms and improves our previous limit by a factor of 2.7 and provides the current tightest limit obtained with free neutrons
    • 

    corecore