1,207 research outputs found

    Delayed phlegmon with gallstone fragments masquerading as soft tissue sarcoma.

    Get PDF
    Complications from lost gallstones after cholecystectomy are rare but varied from simple perihepatic abscess to empyema and expectoration of gallstones. Gallstone complications have been reported in nearly every organ system, although reports of malignant masquerade of retained gallstones are few. We present the case of an 87-year-old woman with a flank soft tissue tumor 4 years after laparoscopic cholecystectomy. The initial clinical, radiographic and biopsy findings were consistent with soft tissue sarcoma (STS), but careful review of her case in multidisciplinary conference raised the suspicion for retained gallstones rather than STS. The patient was treated with incisional biopsy/drainage of the mass, and gallstones were retrieved. The patient recovered completely without an extensive resectional procedure, emphasizing the importance of multidisciplinary sarcoma care to optimize outcomes for potential sarcoma patients

    VALIDATING CONTINGENT VALUATION WITH SURVEYS OF EXPERTS

    Get PDF
    Contingent-valuation estimates for white-water boating passengers are compared with Likert ratings by river guides. The approach involves asking whether passengers and their guides ordinally rank alternative flows the same. The National Oceanic and Atmospheric Administration's Contingent Valuation Panel (1993) suggested "one might want to compare its (contingent-valuation's) outcome with that provided by a panel of experts." River guides constitute a counterfactual panel of "experts." For commercial trips, optimum flows are 34,000 cfs and 31,000 cfs for passengers and guides, and the comparable figures for private trips are 28,000 cfs and 29,000 cfs. In the NOAA Panel framework, passengers can evaluate the consequences of various river flows and translate this into contingent-valuation responses.Resource /Energy Economics and Policy,

    Shifting the Intertial Navigation Paradigm with the MEMS Technology

    Get PDF
    "Why don't you use MEMS?" is of the most common questions posed to navigation systems engineers designing inertial navigation solutions in the modern era. The question stems from a general understanding that great strides have been made in terrestrial MEMS accelerometers and attitude rate sensors in terms of accuracy, mass, and power. Yet, when compared on a unit-to-unit basis, MEMS devices do not provide comparable performance (accuracy) to navigation grade sensors in several key metrics. This paper will propose a paradigm shift where the comparison in performance is between multiple MEMS devices and a single navigation grade sensor. The concept is that systematically, a sufficient number of MEMS sensors may mathematically provide comparable performance to a single navigation grade device and be competitive in terms power and mass allocations when viewed on a systems level. The implication is that both inertial navigation system design and fault detection, identification, and recovery could benefit from a system of MEMS devices in the same way that swarm sensing has benefited Earth observation and astronomy. A survey of the state of the art in inertial sensor accuracy scaled by mass and power will be provided to show the scaled error in MEMS and navigation graded devices, a mathematical comparison of multi-unit to single-unit sensor errors will be developed, and preliminary application to an Orion lunar skip atmospheric entry trajectory will be explored

    Heart rate variability predicts 30-day all-cause mortality in intensive care units

    Get PDF
    Background: Autonomic nervous function, as quantified by heart rate variability (HRV), has shown promise in predicting clinically important outcomes in the critical care setting; however, there is debate concerning its utility. HRV analysis was assessed as a practical tool for outcome prediction in two South African hospitals and compared with Acute Physiology and Chronic Health Evaluation II (APACHE II) scoring.Method: In a dual centre, prospective, observational cohort study of patients admitted to the intensive care units (ICU) of two hospitals in KwaZulu-Natal, South Africa frequency domain HRV parameters were explored as predictors of: all-cause mortality at 30 days after admission; ICU stay duration; the need for invasive ventilation; the need for inotrope/vasopressor therapy; and the need for renal replacement therapy. The predictive ability of HRV parameters against the APACHE II score for the study outcomes was also compared.Results: A total of 55 patients were included in the study. Very low frequency power (VLF) was shown to predict 30-day mortality in ICU (odds ratio 0.6; 95% confidence interval 0.396–0.911). When compared with APACHE II, VLF remained a significant predictor of outcome, suggesting that it adds a unique component of prediction. No HRV parameters were predictive for the other secondary outcomes.Conclusion: This study found that VLF independently predicted all-cause mortality at 30 days after ICU admission. VLF provided additional predictive ability above that of the APACHE II score. As suggested by this exploratory analysis larger multi-centre studies seem warranted.Keywords: APACHE II, autonomic nervous system, critical care, heart rate variability, mortalit

    GENIE Flight Test Results and System Overview

    Get PDF
    NASA has envisioned a suite of lander test vehicles that will be flown in Earth s atmosphere to incrementally demonstrate applicable lunar lander performance in the terrestrial environment. As each terrestrial rocket progresses in maturity, relevant space flight technology matures to a higher technology readiness level, preparing it for inclusion on a future lunar lander design.. NASA s "Project M" lunar mission concept flew its first terrestrial rocket, RR1, in June 2010 in Caddo Mills, Texas. The Draper Laboratory built GENIE (Guidance Embedded Navigator Integration Environment) successfully demonstrated accurate, real time, embedded performance of Project M navigation and guidance algorithms in a highly dynamic environment. The RR1 vehicle, built by Armadillo Aerospace, performed a successful 60 second free flight and gave the team great confidence in Project M s highly reliable and robust GNC system design and implementation. This paper provides an overview of the GENIE system and describes recent flight performance test results onboard the RR1 terrestrial rocket

    Effects of Multivitamin Supplementation on Heart Rate Response in Aerobically Untrained College Aged Students

    Get PDF
    Multivitamin use is increasingly prevalent in the US among most every population. Yet, previous research noted no performance benefits among individuals following a supplementation period. This study focused on the potential physiological benefits from a three week multivitamin supplementation period using 24 (20.9 ± 2.6yr) aerobically untrained college aged students. Subjects were divided equally into three groups (placebo = PL, multivitamin = MV, control = CL) and asked to perform separate eight minute bouts of exercise, consisting of six min of moderate (60%VO2max) intensity followed immediately by two min of high (85%VO2max) intensity exercise on a cycle ergometer. Following the supplementation period, participants came back and performed the same exercise bout. Heart rates were measured with a POLAR Heart Rate monitor and recorded every two min. Data analysis, using ANOVA comparing the three groups, indicated a statistically significant HR interaction. Post hoc paired t-tests, comparing the pre/post supplementation tests of all groups, noted significant differences in HR between MV group during the 60% VO2 (p = 0.04) intensity bout, and approached significance at 85% VO2 (p = 0.10). No difference occurred for the CL group during either moderate or high intensity exercise. The results indicate that the introduction of a supplement, whether real or placebo, may have a physiological effect on the heart rate of aerobically untrained college students

    Sweat gland density and response during high-intensity exercise in athletes with spinal cord injuries

    Get PDF
    Sweat production is crucial for thermoregulation. However, sweating can be problematic for individuals with spinal cord injuries (SCI), as they display a blunting of sudomotor and vasomotor responses below the level of the injury. Sweat gland density and eccrine gland metabolism in SCI are not well understood. Consequently, this study examined sweat lactate (S-LA) (reflective of sweat gland metabolism), active sweat gland density (SGD), and sweat output per gland (S/G) in 7 SCI athletes and 8 able-bodied (AB) controls matched for arm ergometry VO2peak. A sweat collection device was positioned on the upper scapular and medial calf of each subject just prior to the beginning of the trial, with iodine sweat gland density patches positioned on the upper scapular and medial calf. Participants were tested on a ramp protocol (7 min per stage, 20 W increase per stage) in a common exercise environment (21±1°C, 45-65% relative humidity). An independent t-test revealed lower (p\u3c0.05) SGD (upper scapular) for SCI (22.3 ±14.8 glands · cm-2) vs. AB. (41.0 ± 8.1 glands · cm-2). However, there was no significant difference for S/G between groups. S-LA was significantly greater (p\u3c0.05) during the second exercise stage for SCI (11.5±10.9 mmol · l-1) vs. AB (26.8±11.07 mmol · l-1). These findings suggest that SCI athletes had less active sweat glands compared to the AB group, but the sweat response was similar (SLA, S/G) between AB and SCI athletes. The results suggest similar interglandular metabolic activity irrespective of overall sweat rate

    Evidence of American Martens Populating the Turtle Mountains of North Dakota

    Get PDF
    American martens (Martes americana) were native to northeastern North Dakota but were considered extirpated by the early 1800s. Although there is no historic evidence of martens occurring beyond the northeast, forested habitat potentially suitable for martens exists in the Turtle Mountains region of northcentral North Dakota and southwestern Manitoba. From 1989– 1991, the Turtle Mountain Trappers Association translocated 59 martens into the Canadian portion of the Turtle Mountains. During summer 2007, we used covered track-plates and/or remotely-triggered cameras placed at 123 survey sites distributed among 41 1-km2 grid cells (a GIS-generated layer imposed on electronic maps of the study region) to determine if martens occupied the Turtle Mountains in North Dakota. Martens were detected at 26 (21%) sites, representing 20 of the 41 sample cells (49%) widely dispersed throughout the study area. Our study provided the first evidence of martens occurring in North Dakota since the early 1800s

    Non-linear regression models for Approximate Bayesian Computation

    Full text link
    Approximate Bayesian inference on the basis of summary statistics is well-suited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior density by introducing two innovations. The new method fits a nonlinear conditional heteroscedastic regression of the parameter on the summary statistics, and then adaptively improves estimation using importance sampling. The new algorithm is compared to the state-of-the-art approximate Bayesian methods, and achieves considerable reduction of the computational burden in two examples of inference in statistical genetics and in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and Computin

    Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared

    Full text link
    We present a comprehensive statistical analysis of the properties of Type Ia SN light curves in the near infrared using recent data from PAIRITEL and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction and intrinsic variations, for coherent statistical inference. SN Ia light curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR dataset. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient MCMC algorithm exploiting the conditional structure using Gibbs sampling. We apply this framework to the JHK_s SN Ia light curve data. A new light curve model captures the observed J-band light curve shape variations. The intrinsic variances in peak absolute magnitudes are: sigma(M_J) = 0.17 +/- 0.03, sigma(M_H) = 0.11 +/- 0.03, and sigma(M_Ks) = 0.19 +/- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SN at cz > 2000 km/s is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light curve inference tests the sensitivity of the model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.Comment: 24 pages, 15 figures, 4 tables. Accepted for publication in ApJ. Corrected typo, added references, minor edit
    • …
    corecore