3,200 research outputs found
Simulating photon scattering effects in structurally detailed ventricular models using a Monte Carlo approach
Light scattering during optical imaging of electrical activation within the heart is known to significantly distort the optically-recorded action potential (AP) upstroke, as well as affecting the magnitude of the measured response of ventricular tissue to strong electric shocks. Modeling approaches based on the photon diffusion equation have recently been instrumental in quantifying and helping to understand the origin of the resulting distortion. However, they are unable to faithfully represent regions of non-scattering media, such as small cavities within the myocardium which are filled with perfusate during experiments. Stochastic Monte Carlo (MC) approaches allow simulation and tracking of individual photon "packets" as they propagate through tissue with differing scattering properties. Here, we present a novel application of the MC method of photon scattering simulation, applied for the first time to the simulation of cardiac optical mapping signals within unstructured, tetrahedral, finite element computational ventricular models. The method faithfully allows simulation of optical signals over highly-detailed, anatomically-complex MR-based models, including representations of fine-scale anatomy and intramural cavities. We show that optical action potential upstroke is prolonged close to large subepicardial vessels than further away from vessels, at times having a distinct "humped" morphology. Furthermore, we uncover a novel mechanism by which photon scattering effects around vessels cavities interact with "virtual-electrode" regions of strong de-/hyper-polarized tissue surrounding cavities during shocks, significantly reducing the apparent optically-measured epicardial polarization. We therefore demonstrate the importance of this novel optical mapping simulation approach along with highly anatomically-detailed models to fully investigate electrophysiological phenomena driven by fine-scale structural heterogeneity.</p
Incommensurate Magnetism around Vortices and Impurities in High- Superconductors
By solving self-consistently an effective Hamiltonian including interactions
for both antiferromagnetic spin-density wave (SDW) and d-wave superconducting
(DSC) orderings, a comparison study is made for the local magnetic structure
around superconducting vortices and unitary impurities. To represent the
optimally doped regime of cuprates, the parameter values are chosen such that
the DSC is dominant while the SDW is vanishingly small. We show that when
vortices are introduced into the superconductor, an oscillating SDW is induced
around them. The oscillation period of the SDW is microscopically found,
consistent with experiments, to be eight lattice constants (). The
associated charge-density wave (CDW) oscillates with a period of one half
() of the SDW. In the case of unitary impurities, we find a SDW
modulation with identical periodicity, however without an associated CDW. We
propose neutron scattering experiments to test this prediction.Comment: 5 pages, 4 eps figures (color) included in the tex
Striped superconductors in the extended Hubbard model
We present a minimal model of a doped Mott insulator that simultaneously
supports antiferromagnetic stripes and d-wave superconductivity. We explore the
implications for the global phase diagram of the superconducting cuprates. At
the unrestricted mean-field level, the various phases of the cuprates,
including weak and strong pseudogap phases, and two different types of
superconductivity in the underdoped and the overdoped regimes, find a natural
interpretation. We argue that on the underdoped side, the superconductor is
intrinsically inhomogeneous -- striped coexistence of of superconductivity and
magnetism -- and global phase coherence is achieved through Josephson-like
coupling of the superconducting stripes. On the overdoped side, the state is
overall homogeneous and the superconductivity is of the classical BCS type.Comment: 5 pages, 3 eps figures. Effect of t' on stripe filling + new
references are adde
Dynamic Pattern Formation in Electron-Beam-Induced Etching
© 2015 American Physical Society. We report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. We, therefore, modify established theory such that it explains our results and remains universally applicable to EBIE. The patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material
High biomass, low export regimes in the Southern Ocean
Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 54 (2007): 601-638, doi:10.1016/j.dsr2.2007.01.013.This paper investigates ballasting and remineralization controls of carbon sedimentation
in the twilight zone (100-1000 m) of the Southern Ocean. Size-fractionated (<1 μm, 1-51 μm,
>51 μm) suspended particulate matter was collected by large volume in-situ filtration from the
upper 1000 m in the Subantarctic (55°S, 172°W) and Antarctic (66°S, 172°W) zones of the
Southern Ocean during the Southern Ocean Iron Experiment (SOFeX) in January-February 2002.
Particles were analyzed for major chemical constituents (POC, P, biogenic Si, CaCO3), and
digital and SEM image analyses of particles were used to aid in the interpretation of the chemical
profiles.
Twilight zone waters at 66°S in the Antarctic had a steeper decrease in POC with depth
than at 55°S in the Subantarctic, with lower POC concentrations in all size fractions at 66°S than
at 55°S, despite up to an order of magnitude higher POC in surface waters at 66°S. The decay
length scale of >51 μm POC was significantly shorter in the upper twilight zone at 66°S (δe=26
m) compared to 55°S (δe=81 m).
Particles in the carbonate-producing 55°S did not have higher excess densities than
particles from the diatom-dominated 66°S, indicating that there was no direct ballast effect that
accounted for deeper POC penetration at 55°S. An indirect ballast effect due to differences in
particle packaging and porosities cannot be ruled out, however, as aggregate porosities were high
(~97%) and variable.
Image analyses point to the importance of particle loss rates from zooplankton grazing
and remineralization as determining factors for the difference in twilight zone POC concentrations at 55°S and 66°S, with stronger and more focused shallow remineralization at
66°S. At 66°S, an abundance of large (several mm long) fecal pellets from the surface to 150 m,
and almost total removal of large aggregates by 200 m, reflected the actions of a single or few
zooplankton species capable of grazing diatoms in the euphotic zone, coupled with a more
diverse particle feeding zooplankton community immediately below.
Surface waters with high biomass levels and high proportion of biomass in the large size
fraction were associated with low particle loading at depth, with all indications implying
conditions of low export. The 66°S region exhibits this “High Biomass, Low Export” (HBLE)
condition, with very high >51 μm POC concentrations at the surface (~2.1 μM POC), but low
concentrations below 200 m (<0.07 μM POC). The 66°S region remained HBLE after iron
fertilization. Iron addition at 55°S caused a ten fold increase in >51 μm biomass concentrations
in the euphotic zone, bringing surface POC concentrations to levels found at 66°S (~3.8 μM),
and a concurrent decrease in POC concentrations below 200 m. The 55°S region, which began
with moderate levels of biomass and stronger particle export, transitioned to being HBLE after
iron fertilization. We propose that iron addition to already HBLE waters will not cause mass
sedimentation events. The stability of an iron-induced HBLE condition is unknown. Better
understanding of biological pump processes in non-HBLE Subantarctic waters is needed.This
work was supported by the DOE Office of Science, Biological and Environmental Research
Program. Shiptime for SOFeX was funded by NSF
Dynamic charge correlations near the Peierls transition
The quantum phase transition between a repulsive Luttinger liquid and an
insulating Peierls state is studied in the framework of the one-dimensional
spinless Holstein model. We focus on the adiabatic regime but include the full
quantum dynamics of the phonons. Using continuous-time quantum Monte Carlo
simulations, we track in particular the dynamic charge structure factor and the
single-particle spectrum across the transition. With increasing electron-phonon
coupling, the dynamic charge structure factor reveals the emergence of a charge
gap, and a clear signature of phonon softening at the zone boundary. The
single-particle spectral function evolves continuously across the transition.
Hybridization of the charge and phonon modes of the Luttinger liquid
description leads to two modes, one of which corresponds to the coherent
polaron band. This band acquires a gap upon entering the Peierls phase, whereas
the other mode constitutes the incoherent, high-energy spectrum with backfolded
shadow bands. Coherent polaronic motion is a direct consequence of quantum
lattice fluctuations. In the strong-coupling regime, the spectrum is described
by the static, mean-field limit. Importantly, whereas finite electron density
in general leads to screening of polaron effects, the latter reappear at half
filling due to charge ordering and lattice dimerization.Comment: 8 pages, 7 figures, final versio
Linear response functions for a vibrational configuration interaction state
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approac
Microparticles and Exercise in Clinical Populations
open access journalMicroparticles (MPs) are shed membrane vesicles released from a variety of cell types in response to cellular activation or apoptosis. They are elevated in a wide variety of disease states and have been previously measured to assess both disease activity and severity. However, recent research suggests that they also possess bioeffector functions, including but not limited to promoting coagulation and thrombosis, inducing endothelial dysfunction, increasing pro-inflammatory cytokine release and driving angiogenesis, thereby increasing cardiovascular risk. Current evidence suggests that exercise may reduce both the number and pathophysiological potential of circulating MPs, making them an attractive therapeutic target. However, the existing body of literature is largely comprised of in vitro or animal studies and thus drawing meaningful conclusions with regards to health and disease remains difficult. In this review, we highlight the role of microparticles in disease, comment on the use of exercise and dietary manipulation as a therapeutic strategy, and suggest future research directions that would serve to address some of the limitations present in the research to dat
- …