102 research outputs found

    curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome

    Get PDF
    This article introduces a manually curated data collection for gene expression meta-analysis of patients with ovarian cancer and software for reproducible preparation of similar databases. This resource provides uniformly prepared microarray data for 2970 patients from 23 studies with curated and documented clinical metadata. It allows users to efficiently identify studies and patient subgroups of interest for analysis and to perform meta-analysis immediately without the challenges posed by harmonizing heterogeneous microarray technologies, study designs, expression data processing methods and clinical data formats. We confirm that the recently proposed biomarker CXCL12 is associated with patient survival, independently of stage and optimal surgical debulking, which was possible only through meta-analysis owing to insufficient sample sizes of the individual studies. The database is implemented as the curatedOvarianData Bioconductor package for the R statistical computing language, providing a comprehensive and flexible resource for clinically oriented investigation of the ovarian cancer transcriptome. The package and pipeline for producing it are available from http://bcb.dfci.harvard.edu/ovariancancer. Database URL: http://bcb.dfci.harvard.edu/ovariancance

    Circulating Tumor Cells In Advanced Cervical Cancer: NRG Oncology-Gynecologic Oncology Group Study 240 (NCT 00803062)

    Get PDF
    To isolate circulating tumor cells (CTCs) from women with advanced cervical cancer and estimate the impact of CTCs and treatment on overall survival (OS) and progression-free survival (PFS). 7.5 mL of whole blood was drawn pre-cycle 1 and 36 days post-cycle 1 from patients enrolled on Gynecologic Oncology Group 0240, the phase III randomized trial that led directly to regulatory approval of the anti-angiogenesis drug, bevacizumab, in women with recurrent/metastatic cervical cancer. CTCs (defined as anti-cytokeratin positive/anti-CD45 negative cells) were isolated from the buffy coat layer using an anti-EpCAM antibody-conjugated ferrofluid and rare earth magnet, and counted using a semi-automated fluorescence microscope. The median pre-cycle 1 CTC count was 7 CTCs/7.5 mL whole blood (range, 0–18) and, at 36 days post-treatment, was 4 (range, 0–17). The greater the declination in CTCs between time points studied, the lower the risk of death (HR 0.87; 95% CI, 0.79–0.95). Among patients with high (≥ median) pre-treatment CTCs, bevacizumab treatment was associated with a reduction in the hazard of death (HR 0.57; 95% CI, 0.32–1.03) and progression (PFS HR 0.59; 95% CI, 0.36–0.96). This effect was not observed with low (< median) CTCs. CTCs can be isolated from women with advanced cervical cancer and may have prognostic significance. A survival benefit conferred by bevacizumab among patients with high pre-treatment CTCs may reflect increased tumor neovascularization and concomitant vulnerability to VEGF inhibition. These data support studying CTC capture as a potential predictive biomarker

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies
    corecore