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This article introduces a manually curated data collection for gene expression meta-analysis of patients with ovarian cancer

and software for reproducible preparation of similar databases. This resource provides uniformly prepared microarray data

for 2970 patients from 23 studies with curated and documented clinical metadata. It allows users to efficiently identify

studies and patient subgroups of interest for analysis and to perform meta-analysis immediately without the challenges

posed by harmonizing heterogeneous microarray technologies, study designs, expression data processing methods and

clinical data formats. We confirm that the recently proposed biomarker CXCL12 is associated with patient survival, inde-

pendently of stage and optimal surgical debulking, which was possible only through meta-analysis owing to insufficient

sample sizes of the individual studies. The database is implemented as the curatedOvarianData Bioconductor package for

the R statistical computing language, providing a comprehensive and flexible resource for clinically oriented investigation

of the ovarian cancer transcriptome. The package and pipeline for producing it are available from http://bcb.dfci.harvard.

edu/ovariancancer.

Database URL: http://bcb.dfci.harvard.edu/ovariancancer
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Introduction

A wealth of genomic data, in particular microarray data, is

publicly available through diverse online resources. Major

databases of gene expression data, e.g. the Gene

Expression Omnibus (GEO) (1) and ArrayExpress (2), offer

the potential to identify sets of genes predictive of cancer

survival and of patient resistance to chemotherapy using

thousands of samples from multiple laboratories. Such

high numbers of samples are needed to robustly identify

and validate gene signatures for incorporation into routine

clinical practice (3). However, inconsistent formatting

among database interfaces, expression data storage and

clinical metadata annotations present formidable obstacles

to making efficient use of these resources.

Existing resources aiming to make large-scale high-

dimensional analysis across multiple studies tend to serve

only a few specifically targeted needs. To develop reprodu-

cible biomarker discovery methods appropriate for clinical

translation, a data resource must be accurate and retain

clinical variables of known importance as much as possible.

The insilicoDB (4) project provides many curated gene

expression data sets; however, it is not a focused resource

in terms of retention or quality assurance of clinical
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annotations, or retention of all relevant data sets and clin-

ical variables for any one cancer type. The other major

database of curated gene expression studies, the Gene

Expression Atlas (2), provides machine- rather than manu-

ally annotated data, resulting in reduced consistency of an-

notation across studies. These are among the only

databases that offer basics such as uniform gene identifiers

to enable cross-study analysis, and then for only the most

common microarray technologies. Carey et al. (5) describe a

framework for the curation, annotation and storage of

microarray and high-throughput data in general. This

framework allows, for example, institutions to provide

researchers access to in-house and public data in a standar-

dized and convenient fashion. However, there is no existing

database that provides these resources for ovarian cancer.

Ovarian cancer is the fifth-leading cause of cancer

deaths among women (6) and has been the focus of

numerous clinical transcriptome investigations. The

curatedOvarianData database is the result of a focused

effort to enable meta-analysis of these studies and to pro-

vide the highest quality and most comprehensive gene ex-

pression data resource for any cancer. It provides

standardized gene expression and clinical data for 2970

ovarian cancer patients from 23 studies spanning 11 gene

expression measurement platforms, in the form of docu-

mented ExpressionSet objects for R/Bioconductor (7).

Gene expression data were collected from public databases

and author websites, processed in a consistent manner and

mapped uniformly to official Human Gene Nomenclature

Committee (HGNC) (8) gene symbols. Curation of clinical

annotations was machine-checked for correctness of syntax

and human-checked by two individuals to ensure accuracy.

This data package is geared primarily towards bioinfor-

matic and statistical researchers, providing an ideal re-

source for development and assessment of algorithms for

high-dimensional classification, clustering and survival ana-

lysis. It will also be valuable to ovarian cancer researchers

for biomarker identification and validation. In addition to

providing all publicly available gene expression studies with

patient survival in common forms of ovarian cancer, it in-

cludes tumours of rare histologies, normal tissues and un-

common early-stage tumours. Special effort is made to

retain the most important clinical variables from

author-provided metadata and from the original publica-

tions: overall survival, optimal debulking surgery and

tumour stage, grade and histology.

We also developed a software pipeline for automated

and reproducible production of this and comparable data

libraries. The pipeline includes a controlled language for cur-

ation of clinical annotations, defined by a template, which is

intuitive for non-programmers to create and edit, but which

is also used directly for machine syntax checking of curated

annotations. The pipeline handles all steps of the process

including data download, microarray preprocessing,

merging of duplicate probe sets and sample technical repli-

cates, up-to-date probe-set to gene mapping and building

of the R/Bioconductor objects and package.

One important application of the database is testing of

hypothesized prognostic markers of ovarian cancer using

multiple independent studies. We validated a recently pro-

posed independent prognostic indicator of ovarian cancer,

CXCL12 (9), using 13 published studies, demonstrating for

this biomarker that numerous studies are needed to over-

come the lack of power in individual studies of smaller

sample size. We provide code in the documentation of

the curatedOvarianData package demonstrating how this

comprehensive analysis, which was previously impractical to

achieve, is a straightforward application of the database.

Methods and implementation

The pipeline for creating the data package from public

databases (Table 1) is fully automated, with the exceptions

of manual curation of clinical annotations (Figure 1). This

manual curation was integrated in the pipeline with short R

scripts that reformat user-provided annotations into a stan-

dardized template, which largely follows the format of The

Cancer Genome Atlas (29). This template is provided in

Table 2 and used as a unit test in the curatedOvarianData

package, i.e. the curation is automatically checked for valid

values in the package building process. Downloading

phenotype data and expression data from GEO (1), syntax

validation of curated clinical metadata, microarray data

preprocessing, normalization, gene mapping and the cre-

ation of Bioconductor ‘ExpressionSet’ objects, which link

gene expression data and phenotype annotations, were

fully automated. The generation of the package is repro-

ducible using the pipeline provided at https://bitbucket.org/

lwaldron/curatedovariandata.

Data acquisition and curation

Our search for clinically annotated ovarian cancer micro-

array studies identified 21 published studies, which pro-

vided 23 publicly available data sets from various sources

(Table 1). The search not only targeted studies of primary

tumours annotated with patient survival but also included

studies providing other potentially valuable clinical anno-

tation. Other main factors of interest included drug resist-

ance, outcome of the primary tumour debulking surgery,

histology, stage and grade. We excluded studies not mea-

suring gene expression (i.e. studies of genomic copy

number), studies of cell lines, animal models, or

non-primary tumours, and data sets not providing clinical

information. Expression and clinical data were obtained

from the two major public repositories GEO (i) and

ArrayExpress (ii), otherwise from supplementary data of

the original publications. Data from GEO were obtained

using the GEOquery package (31). Clinical annotations

.............................................................................................................................................................................................................................................................................................
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were manually curated using one R script per data set, and

original uncurated annotations were retained as a single

field. Curated annotations were checked by syntax against

a template, which standardized all the known clinically

relevant indicators and allowable data values. Clinical

data were twice independently curated (authors B.G. and

T.R.), and all discrepancies were resolved for the final ver-

sion. The availability of clinical data varied substantially

across datasets (Figure 2).

Gene expression processing and gene mapping

Where raw data from Affymetrix U133a or U133 Plus 2.0

platforms were available, these were pre-processed by

frozen Robust Multi-array Analysis (fRMA) (32), for other

Affymetrix platforms by Robust Multi-array Average

(RMA) (33), and otherwise we used pre-processed data as

provided by the authors. Up-to-date maps from probe set

IDs to gene symbols were obtained from BioMart (34).

Where BioMart maps were not available but target se-

quences were provided for the microarray platforms, we

used the BLAST algorithm (35) to map these sequences

against the human genome (build GRCh37) and to identify

the gene transcript targeted by each probe. Otherwise, the

annotations provided with the platform on GEO were used.

In the curatedOvarianData version of the package, genes

with multiple probe sets were represented by the probe set

with the highest mean across all data sets of the sample

platform (36), and this original probe set identifier was also

stored in the ExpressionSet object (7). We selected the same

representative probe set for all studies of a common micro-

array platform. Finally, we provide two alternative versions

of the package: NormalizerVcuratedOvarianData, where

redundant probe sets are averaged after filtering probe

sets with low correlation to their redundant probe sets,

Table 1. Data sets in the curatedOvarianData database

Data set Reference Platform Samples Late

Stagea

(%)

Serous

Subtype (%)

Median

Survival

(Months)

Median

Follow-up

(Months)

Censoring

(%)

E.MTAB.386 (10) Ill. HumanRef-8 v2 129 99 100 42 55 43

GSE12418 (11) SWEGENE v2.1.1_27k 54 100 100 N/A N/A N/A

GSE12470 (12) Agilent G4110b 53 66 81 N/A N/A N/A

GSE13876 (13) Operon Human v3 157 100 100 25 72 28

GSE14764 (14) Affy U133a 80 89 85 54 37 74

GSE17260 (15) Agilent G4112a 110 100 100 53 47 58

GSE18520 (16) Affy U133 Plus 2.0 63 84 84 25 140 23

GSE19829.GPL570 (17) Affy U133 Plus 2.0 28 N/A N/A 47 62 39

GSE19829.GPL8300 (17) Affy U95 v2 42 N/A N/A 45 50 45

GSE20565 (18) Affy U133 Plus 2.0 140 48 51 N/A N/A N/A

GSE2109 N/A Affy U133 Plus 2.0 204 42 42 N/A N/A N/A

GSE26712 (19) Affy U133a 195 96 95 46 90 30

GSE30009 (20) TaqMan qRT-PCR 380 103 100 99 41 53 45

GSE30161 (21) Affy U133 Plus 2.0 58 100 81 50 83 38

GSE32062.GPL6480 (22) Agilent G4112a 260 100 100 59 56 53

GSE32063 (22) Agilent G4112a 40 100 100 53 81 45

GSE6008 (23) Affy U133a 99 54 41 N/A N/A N/A

GSE6822 (24) Affy Hu6800 66 N/A 62 N/A N/A N/A

GSE9891 (25) Affy U133 Plus 2.0 285 85 93 47 36 59

PMID15897565b (26) Affy U133a 63 83 100 N/A N/A N/A

PMID17290060c (27) Affy U133a 117 98 100 63 82 43

PMID19318476 (28) Affy U133a 42 93 100 34 89 48

TCGA (29) Affy HT U133a 578 90 98 45 52 48

These data sets provide curated gene expression and clinical data for a total of 2970 samples, including all publicly ovarian cancer gene

expression experiments with individual patient survival information at the time of press.
aOnly FIGO Stages III and IV.
bData set is a subset of the samples from the retracted paper PMID17290060, Dressman et al. (27).
cPaper was retracted because of a misalignment of genomic and survival data (30); the corrected data are provided here.

N/A, not available.
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Figure 1. Flowchart of the data collection and curation pipeline. The software implementing this pipeline reproduces all steps
from downloading of data to final packaging, requiring manual intervention only for identifying studies, curation of clinical
metadata and documentation of the package.
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using the Normalizer function of the Sleipnir library

for computational functional genomics (37), and

FULLVcuratedOvarianData, which does not collapse redun-

dant probe sets targeting the same gene transcript but in-

stead provides a probe set to gene symbol map in the

featureData slot of each ExpressionSet.

Final packaging

Technical replicate samples were merged by averaging.

Microarray expression data and clinical metadata were

then represented as ExpressionSet objects (7) for each

study. The ExpressionSet objects were also populated with

citations, platform identifiers and details, data preprocess-

ing methods and warnings of retracted papers (27) and

specimens also used in other studies (26, 28, 29, 38).

ExpressionSets were packaged as the curatedOvarianData

R library, which provides a reference manual including

descriptions of the syntax template and summaries of the

annotations, citation, microarray platform and other infor-

mation for each study.

Discussion

We introduce a data package for the R/Bioconductor stat-

istical programming environment that includes all current

major ovarian cancer gene expression data sets (Table 1).

The process of downloading clinically annotated public

genomic data and proceeding to a final computational ana-

lysis is, despite recent efforts (4, 5), still long and prone to

errors. This is particularly true when the various data sets

need to be comparable for meta-analyses, which requires a

fully standardized annotation. Our data resource provides a

comprehensive and highly curated resource for efficient

meta-analysis of the ovarian cancer transcriptome, for

Figure 2. Available clinical annotation. This heatmap visualizes for each curated clinical characteristic (rows) the availability in
each data set (columns). Red indicates that the corresponding characteristic is available for at least one sample in the data set.
See Table 2 for descriptions of these characteristics.
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biological analysis and bioinformatic methods develop-

ment. It additionally provides a complete computational

pipeline to reproduce this process for other cancers or

data sources.

Two common problems of publicly available genomic

data are the scarcity of clinical annotation and inconsistent

definitions of clinical characteristics across independent

data sets (5). In our review of original papers and curation

of clinical annotations, we were however able to retain, in

most studies, the clinical variables of proven importance:

overall survival, age, optimal debulking surgery, tumour

histology, grade and stage (Figure 2). Other characteristics

such as detailed treatment information or recurrence free

survival times were rarely available; however, ovarian

cancer has a relatively standard treatment regimen of plat-

inum chemotherapy and no radiotherapy. The most import-

ant clinical variables were in general consistently defined

between studies, with these definitions provided in Table 2.

Notably, all studies used the Federation of Gynecology and

Obstetrics (FIGO) staging system, and all but one study (11)

defined suboptimal debulking surgery as residual tumour

mass> 1 cm (Table 2). The relatively large number of

well-annotated data sets in this database may allow inter-

esting future work, addressing the problem of recovering

missing annotations from genomic data only (40).

One important use of this database is the assessment of

prognostic biomarkers. As a demonstration, we examined a

recent study by Popple et al. (9), which analysed the expres-

sion of the chemokine protein CXCL12 using a tissue micro-

array of 289 primary ovarian cancers. CXCL12/CXCR4 is a

chemokine/chemokine receptor axis that has previously

been shown to be directly involved in cancer pathogenesis

(41, 42). Ovarian cancer constitutively expresses CXCL12 and

CXCR4, and both tumour CXCL12/CXCR4 expression and

stroma-derived CXCL12 expression have been reported to

be prognostic factors in human ovarian cancer (41). Popple

et al. found that high levels of CXCL12 protein were asso-

ciated with significantly poorer survival compared with pa-

tients whose tumours produce low amounts of this

chemokine, independently of stage, residual disease (opti-

mal debulking) and adjuvant chemotherapy. The patient

cohort was heterogeneous, with various histologic types,

grades and stages, leaving open the question of whether

this biomarker would be generalizable to other patient

populations. Furthermore, differences in protein abun-

dance may not be associated with RNA abundance.

To investigate these questions, we analysed CXCL12 ex-

pression in all primary tumour samples included in

curatedOvarianData for which overall survival information

was available. To ensure that the expression values were on

the same scale across studies, all data sets were centred by

their means and scaled by their standard deviations. A

population hazard ratio (HR) was then pooled with a

fixed-effects model, in which the HR for each cohort was

weighted with the inverse of the standard error. This is

visualized as a forest plot in Figure 3. Although the effect

is only significant (P< 0.05) in three cohorts individually,

the pooled HR is significantly larger than 1 (HR = 1.15,

95% CI 1.09–1.23). HR refers to the HR between patients

differing by one standard deviation in CXCL12 expression.

This confirms the hypothesis that upregulation of CXCL12 is

associated with poor outcome in 2108 patients from 13 in-

dependent studies with mixed stage, grade and histologies.

The effect is thus small but consistently detected, empha-

sizing the importance of biomarker validation in suffi-

ciently large data collections. To assess the independence

of CXCL12 with stage and residual disease, we also analysed

the 1776 patients from 10 studies where both FIGO tumour

stage and success of debulking surgery were known.

Adjustment for these two established predictors in multi-

variate analysis had little effect on the observed association

between CXCL12 and overall survival (HR = 1.13, 95% CI

1.05–1.21). These HRs are comparable in magnitude to

that reported by Popple et al. for ‘moderate’ CXCL12 stain-

ing (HR = 1.215, 95% CI 0.892–1.655), but lower than re-

ported for ‘high’ staining (HR = 1.684, 95% CI 1.180–

2.404). This potentially reflects that the function of this

gene is at the protein level. Consistent with previous re-

ports (9, 38), we found no significant association of the

receptor CXCR4 with overall survival (HR = 0.95, 95% CI

0.9–1.01, P = 0.09). These analyses are straightforward and

fully reproduced as examples in the package documenta-

tion. Additional analyses limited to more homogeneous pa-

tient subsets, e.g. limited to tumours of the same histology,

are needed, but they are another straightforward applica-

tion of the package.

In constructing curatedOvarianData, we took several

steps to minimize across-study batch effects. Where raw

Affymetrix microarray data were available, we used a stan-

dardized pre-processing protocol. All data sets from the

same platform were normalized with the same algorithms

and parameters. For the Affymetrix U133A and U133 Plus

2.0, we chose the fRMA (32) normalizing algorithm, a vari-

ant of the standard RMA (33) algorithm that uses publicly

available microarray databases to estimate probe-specific

effects and variances, instead of using only the samples

from the data set to be normalized. We provide example

code in the database documentation for removing

between-platform batch effects with the ComBat method

(43). Such a batch effect removal is typically necessary when

data sets are merged.

If different platforms are compared, then the mapping

of probe sets to common identifiers such as gene symbols is

a critical and error prone step. In particular when older

platforms are considered, care must be taken to ensure

that the probe sets target identical transcripts; gene iden-

tification is a persistent problem in genome-scale data in-

tegration. We used the BioMart database (34) to map

.............................................................................................................................................................................................................................................................................................
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stable manufacturer probe set identifiers or Genbank IDs to

current standard gene symbols. For cases in which no stable

identifiers were available, we used the BLAST algorithm

(35) to identify gene symbols from the probe oligo-

nucleotide sequences. When many genes are targeted by

more than one probe set, several approaches of collapsing

probe sets to single genes have been proposed (36, 44, 45).

In the main version of the package, we selected the probe

set with highest mean across all data sets from the same

platform to represent each gene transcript, a method

shown to perform well (36) and with the advantage of

being traceable back to a single oligonucleotide probe se-

quence for each platform. We also provide two alternative

packages with averaged and un-collapsed probe sets. The

version with un-collapsed probe sets provides current HGNC

symbols in the featureData slot of the ExpressionSet ob-

jects, which makes the application of alternative methods

for collapsing probe sets to unique gene symbols straight-

forward, e.g. with the WGCNA R package (46).

We demonstrated meta-analytical use of the package by

showing a survival association of the recently proposed

prognostic biomarker CXCL12 (9). Other possible uses in-

clude the validation of multi-gene signatures, and identifi-

cation of novel gene signatures and biomarkers for patient

survival and response to chemotherapy. Finally, this

package enables rigorous assessment of high-dimensional

machine-learning algorithms in terms of their performance

and computational requirements. We plan to continually

include newly published ovarian cancer data sets in future

versions of this package.

Conclusions

The curatedOvarianData package provides a comprehen-

sive resource of curated gene expression and clinical data

for the development and validation of ovarian cancer prog-

nostic models, the investigation of ovarian cancer subtypes

(10, 25, 29), and the comparative assessment of machine

learning algorithms for gene expression data. This database

greatly reduces the burden of time, expertise and error

involved in assembling a compendium of curated gene

expression data from tumours of known histopathology

and from patients with known clinical progression. These

advantages will be appealing to biostatisticians and bioin-

formaticians for development of analytical methods from

high-dimensional genomic data, but the database will add-

itionally provide a common, version-controlled and trans-

parent platform for reproducible investigation of the

ovarian cancer transcriptome. The pipeline for creating

this database is published under an open license and will

Figure 3. The database confirms CXCL12 as prognostic of overall survival in patients with ovarian cancer. Forest plot of the
expression of the chemokine CXCL12 as a univariate predictor of overall survival, using all 14 data sets with applicable expression
and survival information. HR indicates the factor by which overall risk of death increases with a one standard deviation increase
in CXCL12 expression. A summary HR significantly larger than 1 indicates that patients with high CXCL12 levels had poor
outcome and confirms in several lines of code the previously reported association between CXCL12 abundance and patient
survival (9). Consideration of important clinicopathological features such as stage, grade, histology and residual disease (optimal
surgical debulking) is also straightforward; examples are provided in the package vignette.
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facilitate creating similar resources for other cancers. As

such, we hope this database and pipeline will provide one

part of the solution to reproducibility in high-dimensional

genomic research.
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