26 research outputs found

    A Nemzeti Vidékstratégia a mezÅ‘gazdasági vízgazdálkodás és az öntözésfejlesztés tükrében

    Get PDF
    A Nemzeti Vidékstratégiai Koncepció (Vidékfejlesztési Minisztérium, 2011) vitaanyagának elÅ‘szava a természeti erÅ‘források felértékelÅ‘désére, a természeti környezet védelmére, valamint a mezÅ‘gazdaság és a vidék szoros kapcsolatára hívja fel a figyelmet. Ennek tükrében élelmiszerelőállítás csak a talajok, az ivóvízbázisok és a táj fenntartását eredményezÅ‘, a jó környezeti állapotot és az élÅ‘világ sokszínűségét megÅ‘rzÅ‘, valamint a vidéki életformát, a helyi közösségeket és kultúrát megóvó jó minÅ‘ségű és biztonságos alapanyagokra épülÅ‘ termelés mellett értelmezhetÅ‘. Jelen vitacikk a mezÅ‘gazdasági vízhasználat vidékstratégiai vonatkozásait kívánja feltárni, felhasználva kutatási eredményeinket1 és figyelembe véve vizsgálataink alapján megfogalmazott javaslatainkat. ---------------------------------------------------- THe role of natural resources, their connections to rural ares, prote4ction of environment led us to rethink the food production,based on on rational land use, the viability of rural settlements, food safety. The paper carries out the importance of agricultural water use based on our former research outcomes.természeti erÅ‘források, föld, öntözés, klíma, role of natural resources, land, climate change, irrigation, Agricultural and Food Policy, Environmental Economics and Policy, Production Economics,

    Performance evaluation of a robot-mounted interferometer for an industrial environment

    Get PDF
    High value manufacturing requires production-integrated, fast, multi-sensor and multi-scale inspection. To meet this need, the robotic deployment of sensors within the factory environment is becoming increasingly popular. For microscale measurement applications, robot-mountable versions of high-resolution instruments, that are traditionally deployed in a laboratory environment, are now becoming available. However, standard methodologies for the evaluation of these instruments, particularly when mounted to a robot, have yet to be fully defined, and therefore, there is limited independent evaluation data to describe the potential performance of these systems. In this paper, a detailed evaluation approach is presented for light-weight robot mountable scanning interferometric sensors. Traditional evaluation approaches are considered and extended to account for robotic sensor deployment within industrial environments. The applicability and value of proposed evaluation is demonstrated through the comprehensive characterization of a Heliotis H6 interferometric sensors. The results indicate the performance of the sensor, in comparison to a traditional laboratory-based system, and demonstrate the limits of the sensor capability. Based-on the evaluation an effective strategy for robotic deployment of the sensor is demonstrated

    Robust hand-eye calibration of 2D laser sensors using a single-plane calibration artefact

    Get PDF
    When a vision sensor is used in conjunction with a robot, hand-eye calibration is necessary to determine the accurate position of the sensor relative to the robot. This is necessary to allow data from the vision sensor to be defined in the robot's global coordinate system. For 2D laser line sensors hand-eye calibration is a challenging process because they only collect data in two dimensions. This leads to the use of complex calibration artefacts and requires multiple measurements be collected, using a range of robot positions. This paper presents a simple and robust hand-eye calibration strategy that requires minimal user interaction and makes use of a single planar calibration artefact. A significant benefit of the strategy is that it uses a low-cost, simple and easily manufactured artefact; however, the lower complexity can lead to lower variation in calibration data. In order to achieve a robust hand-eye calibration using this artefact, the impact of robot positioning strategies is considered to maintain variation. A theoretical basis for the necessary sources of input variation is defined by a mathematical analysis of the system of equations for the calibration process. From this, a novel strategy is specified to maximize data variation by using a circular array of target scan lines to define a full set of required robot positions. A simulation approach is used to further investigate and optimise the impact of robot position on the calibration process, and the resulting optimal robot positions are then experimentally validated for a real robot mounted laser line sensor. Using the proposed optimum method, a semi-automatic calibration process, which requires only four manually scanned lines, is defined and experimentally demonstrated

    Robust surface abnormality detection for a robotic inspection system

    Get PDF
    The detection of surface abnormalities on large complex parts represents a significant automation challenge. This is particularly true when surfaces are large (multiple square metres) but abnormalities are small (less than one mm square), and the surfaces of interest are not simple flat planes. One possible solution is to use a robot-mounted laser line scanner, which can acquire fast surface measurements from large complex geometries. The problem with this approach is that the collected data may vary in quality, and this makes it difficult to achieve accurate and reliable inspection. In this paper a strategy for abnormality detection on highly curved Aluminum surfaces, using surface data obtained by a robot-mounted laser scanner, is presented. Using the laser scanner, data is collected from surfaces containing abnormalities, in the form of surface dents or bumps, of approximately one millimeter in diameter. To examine the effect of scan conditions on abnormality detection, two different curved test surfaces are used, and in addition the lateral spacing of laser scans was also varied. These variables were considered because they influence the distribution of points, in the point cloud (PC), that represent an abnormality. The proposed analysis consists of three main steps. First, a pre-processing step consisting of a fine smoothing procedure followed by a global noise analysis is carried out. Second, an abnormality classifier is trained based on a set of predefined surface abnormalities. Third, the trained classifier is used on suspicious areas of the surface in a general unsupervised thresholding step. This step saves computational time as it avoids analyzing every surface data point. Experimental results show that, the proposed technique can successfully find all present abnormalities for both training and test sets with minor false positives and no false negatives

    Laser Wake Field Collider

    Get PDF
    Recently NAno-Plasmonic, Laser Inertial Fusion Experiments (NAPLIFE) were proposed, as an improved way to achieve laser driven fusion. The improvement is the combination of two basic research discoveries: (i) the possibility of detonations on space-time hyper-surfaces with time-like normal (i.e. simultaneous detonation in a whole volume) and (ii) to increase this volume to the whole target, by regulating the laser light absorption using nanoshells or nanorods as antennas. These principles can be realized in a one dimensional configuration, in the simplest way with two opposing laser beams as in particle colliders. Such, opposing laser beam experiments were also performed recently. Here we study the consequences of the Laser Wake Field Acceleration (LWFA) if we experience it in a colliding laser beam set-up. These studies can be applied to laser driven fusion, but also to other rapid phase transition, combustion, or ignition studies in other materials.publishedVersio

    Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells

    Get PDF
    Exosomes are small extracellular vesicles (sEVs), playing a crucial role in the intercellular communication in physiological as well as pathological processes. Here, we aimed to study whether the melanoma-derived sEV-mediated communication could adapt to microenvironmental stresses. We compared B16F1 cell-derived sEVs released under normal and stress conditions, including cytostatic, heat and oxidative stress. The miRNome and proteome showed substantial differences across the sEV groups and bioinformatics analysis of the obtained data by the Ingenuity Pathway Analysis also revealed significant functional differences. The in silico predicted functional alterations of sEVs were validated by in vitro assays. For instance, melanoma-derived sEVs elicited by oxidative stress increased Ki-67 expression of mesenchymal stem cells (MSCs); cytostatic stress-resulted sEVs facilitated melanoma cell migration; all sEV groups supported microtissue generation of MSC-B16F1 co-cultures in a 3D tumour matrix model. Based on this study, we concluded that (i) molecular patterns of tumour-derived sEVs, dictated by the microenvironmental conditions, resulted in specific response patterns in the recipient cells; (ii) in silico analyses could be useful tools to predict different stress responses; (iii) alteration of the sEV-mediated communication of tumour cells might be a therapy-induced host response, with a potential influence on treatment efficacy.Peer reviewe
    corecore