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Abstract: The detection of surface abnormalities on large complex parts represents a significant 

automation challenge. This is particularly true when surfaces are large (multiple square metres) but 

abnormalities are small (less than one mm square), and the surfaces of interest are not simple flat planes. 

One possible solution is to use a robot-mounted laser line scanner, which can acquire fast surface 

measurements from large complex geometries. The problem with this approach is that the collected data 

may vary in quality, and this makes it difficult to achieve accurate and reliable inspection. In this paper a 

strategy for abnormality detection on highly curved Aluminum surfaces, using surface data obtained by a 

robot-mounted laser scanner, is presented. Using the laser scanner, data is collected from surfaces 

containing abnormalities, in the form of surface dents or bumps, of approximately one millimeter in 

diameter. To examine the effect of scan conditions on abnormality detection, two different curved test 

surfaces are used, and in addition the lateral spacing of laser scans was also varied. These variables were 

considered because they influence the distribution of points, in the point cloud (PC), that represent an 

abnormality. The proposed analysis consists of three main steps. First, a pre-processing step consisting of 

a fine smoothing procedure followed by a global noise analysis is carried out. Second, an abnormality 

classifier is trained based on a set of predefined surface abnormalities. Third, the trained classifier is used 

on suspicious areas of the surface in a general unsupervised thresholding step. This step saves 

computational time as it avoids analyzing every surface data point. Experimental results show that, the 

proposed technique can successfully find all present abnormalities for both training and test sets with 

minor false positives and no false negatives. 

 

Keywords: Automatic abnormality detection, Point Cloud analysis, Feature extraction, Feature 
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

1. INTRODUCTION 

In many manufacturing applications, surface inspection is a 

critical part of the manufacturing process. For components 

that are large and highly sculptured, reliably searching for 

small surface abnormalities represents a difficult, time 

consuming and costly task. The complexity of the task often 

means this type of inspection is performed only by human 

experts; however, due to limitations in accuracy, consistency, 

speed and reliability there is a strong motivation to automate 

these inspection tasks. One possible solution is to use a robot-

mounted laser line scanner. Laser line scanners are fast 

contactless sensors that can be used for the measurement and 

inspection of surfaces. The low weight and compact size of 

laser line scanners allow them to be integrated with industrial 

robots to form a flexible inspection system.  

A significant quantity research has been conducted on the use 

of laser scanners for automatic inspection in manufacturing 

applications. One group of strategies for surface abnormality 

detection are based on the use of an existing ideal CAD 

(computer aided design) model. (Newman & Jain, 1995) 

proposed an automatic visual inspection system for 

abnormality detection using range images and computer-

aided design (CAD) models. An alternative approach is 

presented by (Lilienblum, Albrecht, Calow, & Michaelis, 

2000) about the automatic detection of small dents in car 

bodies by training an artificial neural network (ANN) using 

measurements of several master work pieces; (Hong-Seok & 

Mani, 2014; Prieto et al., 2000; Prieto, Redarce, Lepage, & 

Boulanger, 2002) are other examples of this approach. Other 

techniques that  are independent of a CAD model include 

(Schall Oliver, Belyaev Alexander, 2005), where a noise 

removal method was proposed to detect simple deformations 

in a point cloud (PC) that resembles outliers in a smooth 

surface. However, the parameter selection for this method is 

not intuitive, and it is not appropriate when the deformations 

do not resemble outliers.  In (H. Woo, E. Kang, Semyung 

Wang, 2002), a technique for PC segmentation  based on 
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octree structures and recursive subdivision of the volume of a 

3D mesh was introduced. The subdivision was performed 

based on thresholding the standard deviation of surface 

normal. A problem with this approach is that the threshold 

must be selected appropriately, to exclude the expected 

surface form and roughness (including measurement noise), 

but include the surface features that must be detected. 

Similarly, (Yogeswaran & Payeur, 2012) combined enhanced 

octree-based feature extraction with segmentation and 

classification. Deviation in surface normal was also used as 

point weights in (Pauly, Keiser, & Gross, 2003). At different 

scales, different local neighbourhood sizes were used to 

compute point weights, and the corresponding weights to 

strong persistent surface features exceeded a threshold across 

multiple scales. This method is appropriate if the structure of 

the features allows quantification based on scale-dependant 

variation and the choice of an appropriate threshold is not an 

issue.  

In this paper, the problem of abnormality detection, when 

using a robot mounted 2D laser scanner is considered. This 

application provides challenging PCs that contain variable 

noise and scan resolution due to object surface curvature and 

the relative position of the scanner from the object. To 

investigate this problem, two common scenarios are 

considered; high resolution and high line space variability 

(H-H) and low resolution but low line space variability (L-L). 

The scan line spacing in the PC of the two cases is firstly 

different due to the robot controlled scan steps, but also, the 

object curvature and the robot position causes geometrically 

dependent changes in line spacing. Due to these issues, the 

measured set of points that represents a given surface 

abnormality is not always consistent. In this paper a robust 

defect detection strategy, that is able to cope with 

inconsistent point spacing, is presented. The proposed 

method consists of a pre-processing step, a feature extraction 

and training step and finally a test step. The main 

contribution of this work is addressing the variable quality of 

data collected within a single PC. This is done by detecting 

and excluding the local regions of the PC with excessively 

high levels of noise, but noting the locations for follow-up 

scans or inspections. Then, where possible, adaptive filtering 

of local patches before feature extraction is used to reduce the 

number of false positives from lower quality data. Once 

suitable data is identified a defined set of structural and 

statistical features capable to deal with typical line spacing 

variations are proposed.  

The paper is organized as follows; Section 2 describes the 

equipment setup used for this work. Section 3 is about PC 

analysis techniques. The experimental results are presented in 

section 4 and finally there is a discussion and conclusion in 

sections 5 and 6 respectively.  

2. DATA AQUISITION  

2.1 Laser Scanner  

A custom made laser scanner consisting of a Flexpoint 

MVnano, 450nm, 1mW,     fan angle, focusable laser and a 

Basler acA1600-20gm GigE camera was used. Choosing a 

triangulation angle of 35° and a stand-off distance of 110mm, 

the scanner resolution is calculated to be 84µm/pixel (  

direction, along the laser line) and 146µm/pixel (  direction, 

depth – this can be substantially improved by fitting across 

the imaged laser line width, achieving sub-pixel resolution, as 

done by Halcon at the time of PC extraction – see Data sets in 

section 2.2). This laser scanner was mounted on a Fanuc LR 

Mate 200 iC industrial robot arm, driven by a R-30/A Mate 

controller (Fig. 1). Moving the scanner with the robot arm 

over an object allowed us to scan the object, with a resolution 

in   direction defined only by the robot motion. The robot 

path was chosen such that the laser scanner should always be 

normal and at the same stand-off distance to the currently 

investigated part of the target object. This allowed us to scan 

large objects, having substantial curvature and height 

variation, without losing laser scanner data due to exceeding 

the working distance (field of depth) of the scanner or due to 

signal loss occurring at high angles (attributed to light 

scattering and back-reflection). However, this path was 

generated from the assumed (estimated) target geometry, 

obtained either via few sample points (interpolated) or via 

estimated surface modelling (mathematical function). As a 

consequence, the scanning path may not always accurately 

follow the object surface, resulting in sub-optimal data 

quality, especially for highly irregular surfaces. Additionally, 

the scan was performed with fixed step size in the   direction 

(  ), resulting in potentially varying scan line spacing    on 

a curved object (see Fig.2, constant   , varying   ). 

            

Fig. 1. The laser scanner setup mounted on a robot arm  

 

Fig. 2. The inconsistent line spacing due to robot path 

following. 

2.2 Data Sets 

Two pieces of aluminium were used for test surfaces; one 

was formed into a curved shape and was scanned with lower 

resolution resulting from a robot step size of 0.5 mm (L-L), 

and the second has slightly higher curvature and was scanned  
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Fig. 3. (a) The local abnormalities on the Aluminium object. 

(b) Boxplots of the line spaces for the two PCs.  The central 

mark is the median, the edges of the box are the 25th and 

75th percentiles, the whiskers extend to the most extreme 

data points and the red crosses are outliers.  

in higher resolution with a robot step size of 0.25 mm (H-H). 

Both objects contain distinct features, such as dents and 

bumps of about millimetre in diameter as shown in (Fig. 3-a). 

In both cases, identical laser scanner settings were used. 

Subsequent laser scanner point cloud extraction and object 

reconstruction was performed using the Halcon image 

processing software library. As each laser scanner image was 

taken, it was transformed into a common coordinate system, 

based on robot position to create a full PC representing the 

scanned object. Examples of the two PCs can be seen in (Fig. 

4). As can be seen, the line spacing is not constant in both 

PCs due to the reasons explained in the previous section. The 

line spacing variability    is shown as boxplots of the 

adjacent lines spaces in (Fig. 3-b). In addition, a ratio is 

computed as (  
   (   )

   (   )
 ) for each data set so that,       

      and            , that also indicates the level of 

spacing variation in each case. Comparing the line spaces to 

the abnormality sizes in (Fig. 3-a) shows that an abnormality 

can be seen at least in two or three lines in most parts of the 

PCs. However, they might be missed if they are located 

around the  few number of outlying lines with more than one 

millimetre spacing.  

When using a 2D laser scanner, it is common to have 

variation in the quality of PC. This is due to the condition of 

the scanned surface, and also the orientation and position of 

the laser scanner relative to the surface (see section 2.1). As a 

result, care must be taken in the choice of the threshold value 

used for laser line segmentation from the image profiles. The 

typical threshold value that acts as cut-off point for line 

segmentation is high (e.g. 100) so that, points that do not pass 

this threshold are not segmented. Based on Halcon 

documentation (MVTec Software GmbH, München, 2015), 

the position of a scanned line profile in an image is 

determined column by column with sub-pixel accuracy by 

computing the centre of gravity of the grey levels of all pixels 

fulfilling the condition:                    . A high value 

of cut-off might not be appropriate for all possible 

measurement cases; as such in some circumstances useful 

data may be incorrectly discarded. A low value, on the other 

hand can safely keep all the line points. The drawback is that 

this results in noisier PC, especially in some local region. 

Therefore, noise removal strategies should be employed to 

reduce the effect of noise. In this work, low threshold values 

are used and noise detection and smoothing strategies are 

employed to alleviate the problem. 

 

 

Fig. 4. 3D Plots of the two PCs and the sample abnormal regions. The line spacing is not constant. 
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3.  PC ANALYSIS 

In this section, the procedures for analysis of the PCs are 

explained step by step. 

3.1 Pre-Processing 

At this step, first a fine smoothing is performed to remove the 

few undesired points around the PCs. MATLAB PC noise 

removal function, ‘pcdenoise’, with a small neighbour size 

(less than five) and fine threshold value was used for this 

aim. While this alleviates small fluctuations over the PCs, 

some weak signal features in the areas of PC with high line 

spacing are lost after this step, as shown in (Fig. 5). In the 

data sets used in this work, this effect has been observed in 

some left side areas of H-H. One of such abnormalities is 

shown in (Fig. 4-c). Due to this effect, the abnormality 

detection model should be developed based on features that 

are capable of finding such cases. 

Another issue is that, this fine smoothing step does not 

remove the significant noise in the PCs. As explained in the 

previous section, due to the low threshold level, noisy PCs 

have been formed. Basically, two different noise effects can 

be observed in the data sets; there is a general noise in all PC 

areas and even with fine smoothing it is still available. 

Besides that, a spread of high level of noise exists in some 

limited regions of PCs. To illustrate the variability in PC 

quality, an example set of PC data, containing such spread of 

noise and also a real defect, is shown in (Fig. 7). Such noisy 

regions can easily be misclassified as a real abnormality 

which increases the false positives. In this work, an adaptive 

local mean filter is used on small patches of PC before 

feature extraction to handle the first noise effect (see section 

3.2) and a novel approach is taken to address the second 

noise spread problem, whereby all data is accepted regardless 

of the perceived quality. An algorithm is then applied to 

assess the quality of the data. In order to detect the regions 

with a high spread of noise, the following steps were 

performed. 

 

Fig. 5. The effect of fine smoothing on the weak features in 

high spaced scan lines (a) an abnormality before smoothing 

(b) after smoothing. 

1. First, the most suspicious lines in terms of noise are found 

using the gradient function as a means of variation 

detection. The sum of the absolute values of point’s 

gradients at each scanned line           was 

considered    ∑ |
   

  
| 

  
   .    is the number of points at 

line   and 
   

  
 shows the gradient of changes in   direction 

at point   which is the direction that the noisy height 

variation occurs. Then, those     higher than one standard 

deviation from the mean were considered     (  )  
 (  ) as a list of suspicious lines. This is in fact, a 

comparison of all the scanned lines (between-line 

comparison). 

 

2. At this step, analysis of changes is performed within 

selected lines at previous step. The aim is to find whether 

the high value of gradients in a line is due to the existence 

of a local abnormality or any other undesirable effect, in a 

few numbers of points in the line, or there exist a spread 

of higher number of significantly noisy points. For this 

aim, the selected lines are segmented into bins of fixed 

length (20 points)           and the variation in each 

bin is compared to the average variation of the line 

population. Based on our observations, a pre-assumption 

is that the number of regular points in a line is not less 

than the highly noisy ones. This means that the average 

variation of total bins, is closer to the regular points 

population rather the noisy ones.  Based on this, the 

average sum of the absolute values of gradients at each 

bin    as well as the total average over all the bins     is 

calculated.  Then, the bins distances from the overall 

average (of gradients)    |      |          is 

computed. Considering the distribution of distances is 

normal, a threshold can be defined using their average and 

standard deviations       to detect the number of 

irregularities in the line that exceeds the threshold. If there 

are few numbers of bins (e.g. less than 5) far from the 

average distances, there exist a local region rather than a 

spread noise (see Fig. 6). Such lines are excluded from 

the original list of suspicious lines found in the first step.  

 

3. At this step, the suspicious lines are checked to be 

adjacent and those individual lines far from the other 

groups are excluded. A margin (e.g. 2) is also considered 

to include the neighbour lines before/after the group of 

lines in the list. 

4. In the last step, the noisy points of the group of lines are 

found based on thresholding the       as performed in the 

first step. The detected points at each line are integrated to 

remove the discontinuities and the neighbour points 

within a margin before and after the area are also 

included. Furthermore, the spread of indices between the 

  

 

Fig. 6. The plot of      in a line with one abnormality (a) and 

a line with a noise spread area (b)  

(a)                                          (b) 

(a)                                          (b) 
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Fig. 7. A detected highly noisy region    which is excluded 

from the analysis.  

group of lines are equalized so that, an integrated rectangular 

shape area is formed as shown in (Fig. 7) and the 

corresponding indices are recorded in a filtered list  . 

3.2 Feature Extraction 

The features are defined based on the structures and 

characteristics of abnormalities that make them different from 

the regular lines. PC abnormalities are not all in similar 

shape. For example, the abnormalities shown in (Fig. 4-a,b) 

of L-L are more similar in structure to the one shown in 

(Fig.4-d) in H-H. However, there are abnormalities such as 

(Fig. 4-c), which are different in structure due to the 

smoothing at pre-processing step explained in section 3.1. 

The abnormalities similar to (a,b,d) might be confused with 

some noisy regions of the PCs, but the shape of those similar 

to (c)  is different due to the missing points. The regions with 

a spread of high level of noise are already detected and 

excluded in the previous pre-processing step which alleviates 

the first problem. The choice of features can also help to 

reduce these problems.  

For feature extraction, some points from different regular 

regions of each PC as well as some abnormal points are 

extracted and labelled for training. Then, a local rectangle 

patch of points in few millimetres is considered around each 

point. An adaptive local mean filter is applied to the patch for 

de-noising in the next step. The window size of the filter 

changes adaptively based on the sum of absolute values of 

gradients inside a patch, which shows the level of variability 

and noise in that patch. Thereafter, some features are 

extracted.  

 

 

Fig. 8. Illustration of the normal to a patch and deviation 

angle   for a patch point   . 

3.2.1 Normal Features 

One type of classic feature for abnormality detection is 

surface normal. For finding the normal to a patch, a surface is 

fitted to the patch points and then, the normal to the fitted 

surface is computed (see Fig. 8). This normal is initiated from 

the average coordinate of all points in the patch (   in Fig. 8). 

Then, the angle between the normal and the connecting 

vector between    and each point in the patch    is 

considered (  in Fig. 8). The deviation of   from     
increases mainly when there are variations in a patch due to 

the existence of an abnormality or high level of noise. 

Recalling that the major noisy regions are excluded at the 

pre-processing step and the adaptive filtering alleviates the 

noise, we observed that the number of points with high level 

of deviations (e.g. more than    ) is more in an abnormal 

patch than a noisy or regular one.  Therefore, the first normal 

feature is defined as the number of points in the patch with 

high degrees of deviations      (      
 ) so that,     

|     
 |. The second feature is defined based on the 

absolute value of difference between     and their 

population mean  (   ) so that,      |     (   )| . The 

population mean is computed using all the samples in a 

patch. This feature can be discriminative in conditions that 

the number of abnormal points with large deviations is less 

compared to the majority of regular points in a patch. 

3.2.2 Height Features 

A significant characteristic of most abnormal patches is the 

change in height of some points compared to the regular 

points. This can be quantified as a feature for each point in 

the patch    , by fitting a surface to a patch and finding the 

differences in the original height of the points and the 

corresponding height in the fitted plane.  

In addition, the height changes can be considered at each line 

within the patch. In this case, the absolute value of height 

deviations from the population mean at each line is 

considered      |     (  )| .  

3.2.3 Chi-Squared statistics (  ) 

Since in many cases, the abnormal points in a patch line have 

similar behaviour to a Gaussian distribution, the goodness of 

fit to a Gaussian is considered as a feature    . The chi-

squared statistic is a measure of the goodness-of-fit of the 

data to the Gaussian model. This statistic shows how many 

standard deviations each data point lies from the model: 

    ∑(
     (  )

 (  )
) 

  

   

 (1) 

Where,    is the number of points in a patch line,     

√   
     

     
  is the Euclidean distance of each point in 

the line from the origin,  (  ) and  (  ) are the average and 

standard deviations of    s respectively. The lower    values 

show better fit to a Gaussian. 

Abnormality 
Noise spread 

H-H PC 

Detected Noisy Area 
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3.2.4 Proximity Features 

As shown in (Fig. 4-c), there are abnormalities that there is 

not any significant local variations in their height due to 

missing points. For these types of abnormalities, a proximity 

feature       is defined based on maximum distance of each 

point in a patch from its nearest point in the adjacent 

lines,           (       ) so that,         are the 

distances to the nearest points in the next and previous lines 

respectively. This feature is discriminative for the 

abnormality points before or after a line with a gap in, or the 

points located in peaks or valleys around the abnormality 

area. However, they might not be significantly different for 

the points within the line that the gap is located. 

3.3 Feature Transformation 

In order to increase the discrimination power of the training 

features (   ), the Rayleigh Quotient strategy for feature 

transformation is employed (Parlett, 1998). The basic idea is 

to transfer the features into a new space so that, the distance 

between the features in each class be minimized (within-class 

distance) while their distance to the other classes be 

maximized (between-class distance). 

         (
     

     
) (2) 

where,    (     )(     )
  so that,    and    are the 

mean of the features at each class and    (     ) so 

that,   and    are the two classes covariance matrices. The 

solution is based on a generalized Eigen value decomposition 

to find the Eigen vectors  . Once this Eigen vector matrix is 

learnt, it can be used for transforming the training or test 

features (       ),  using its first two or three important 

components,     (     ). Each component is a linear 

combination of all the original features. 

3.4 Training a Classification Model 

In order to classify the transformed features  , an SVM 

classifier is trained. SVM is a kernel-based classification 

method. It is characterized based on a maximum margin 

algorithm. The basic idea is to map features into a high 

dimensional feature space using the kernel functions 

strategies. The classification is performed based on a linear 

model in this feature space whose coefficients are found 

based on an optimization strategy to obtain the minimum 

error. More information in this case can be found in chapter 

12 of (Hastie, T. , Tibshirani, R. , Friedman, J. 2009).  

The reason for the choice of this classification method is that 

it is appropriate for data sets with linear or non-linear 

behaviour. This is due to the use of a suitable kernel that can 

be found based on a model selection strategy.  In this work, 

the LibSVM (Chang & Lin, 2011) toolbox for MATLAB is 

used and the choice of kernel and all the related parameters 

are done using an 8-fold cross validation (CV). 

3.5 Test Step 

A PC includes more than hundred thousands of points and 

applying the feature selection and classification on all of the 

points is highly time-consuming. In order to reduce the 

computational load, a fast unsupervised thresholding is 

applied on each PC, to find all the suspicious points including 

abnormalities, noisy and missing point areas. Then, all the 

analysis steps, including patching, adaptive filtering, feature 

selection and transformation and finally classification are 

performed only on the limited set of suspicious points. In the 

following this unsupervised thresholding step is described. 

The common characteristic of any type of irregularity in a 

PC, including the highly noisy areas and abnormalities is a 

gap or irregular distance between some nearby points. This 

can be observed in (Fig. 4-(a-d) and Fig. 7). Based on this, 

the Euclidean distance between consecutive points at each 

line is computed. The irregularities are found by thresholding 

these distances. The threshold value is chosen empirically 

based on the minimum distance that might indicate an issue.  

Later during the feature extraction, when a patch is defined 

for one of the detected points, the analysis is also performed 

for any other detected points in that patch. In other words, 

more than one detected point might share the same patch.  

4. EXPERIMENTAL RESULTS 

In this section the results of pre-processing, training and test 

steps are presented. 

4.1 Pre-Processing Results 

At the pre-processing step, the noise detection algorithm, has 

found the regions of the PCs where a high level of noise 

exist. (Fig. 9-a) shows the distribution of noise over the L-L 

PC and (Fig. 9-b)) illustrates the corresponding filtered noisy 

areas by the algorithm. Only the areas where the noise is 

widely spread are considered and the local noisy areas are left 

as explained in section 3.1.  Similarly, the noise spread area 

was found for H-H. 

 

Fig. 9. (a) 3D representation of the L-L PC coloured based on 

the distribution of noise. (b) The corresponding filtered 

regions, where a spread of high level of noise exists.  

4.2 Training Step Results 

Based on the characteristics of the abnormalities of L-L PC, 

that is explained in section 3.2, five features including 

                     were used for training a classifier for 

this PC. These features are appropriate for abnormalities that 

have deviations from surface normal and height in their 

structure and can be described as a Gaussian distribution.  

(a)                                          (b) 
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In the case of H-H PC, besides these five features, the 

maximum distance between the nearest points in the adjacent 

lines       was also used.  (Fig. 10) shows the features for the 

two classes of H-H. As can be seen,     shows that many 

abnormality features have high values of (      
 ) 

compared to the regular ones. Those abnormality features that 

their deviation from the fitted surface normal (  ) is close to 

    are close to the regular features population. That can be 

also be observed in    . As expected,      is lower for most 

of the abnormality features that have a Gaussian shape 

behaviour compared to the regular features. In the case of 

height features,     shows better discrimination rather 

than    . This might be due to the contribution of more 

number of local points to a patch height features compared to 

a line one. The last feature,       shows also a discriminative 

effect between the two classes. This feature is very low for 

some of the regular PC points from the part of the H-H with 

low spacing and the points at the high spaced area have high 

values. On the other hand, most of the abnormalities are in 

the middle part except those located on the high spaced part 

of the PC which have high values. Similar behaviour was 

seen for the similar features of L-L.  

After feature extraction, the features are transformed into a 

new space, using the Rayleigh Quotient for increasing the 

discrimination, as explained in section 3.3. The first three 

feature components in the new space are shown for L-L and 

H-H in (Fig. 11). As can be seen, the training features are 

well separated in the new space and the classification 

performance was 98.913% and 100% for the training labelled 

data of L-L and H-H PCs respectively. 

4.3 Test Step Results 

At the test step, the unsupervised thresholding was applied 

first to detect the suspicious points as shown in (Fig. 12-(a,c)) 

for L-L and H-H PCs respectively. The suspicious points that 

were among the initially detected highly noisy areas (from 

  

 

Fig. 10. (a) 3D representation of         and      (b) 3D 

representation of               for the two training classes of 

H-H. 

 

Fig. 11. 3D representation of the first three components of 

the transformed features into a new space for L-L (a) H-H 

(b). 

the filtered list) are shown in black colour in the images. 

Those points weren’t considered in the next analysis steps. 

Then, based on the steps explained in section 3.5, the final 

abnormalities were classified (Fig. 12-(b,d)). The program 

has found all the abnormalities successfully for both PCs and 

there were no false positives in the case of L-L and only one 

false positive for H-H.  

5. DISCUSSION 

The obtained results show that the proposed feature 

extraction and transformations as well as the classification 

strategy can successfully find different types of 

abnormalities. One of the main issues in this work is the 

choice of features. Generally, it is desirable to choose the 

most discriminative features with minimum correlation or 

dependency. In order to test the benefit of keeping the 

selected features, the model performance was evaluated in 

terms of false positives and negatives as well as the 

percentage of classification performance at training step for 

different selections of features. Therefore, the classification 

model was trained separately using the two normal features, 

the two height features, the chi-squared and finally the 

proximity feature and the performance was evaluated. For 

both PCs the best result was obtained using all the six 

features. This demonstrates that each of the defined features 

characterize a unique aspect of the abnormalities that is 

important for discrimination.  

6. CONCLUSION 

In this paper, an abnormality detection strategy is proposed 

for identifying dents and bumps on curved Aluminium 

objects using their PC data, which is obtained by a laser 

scanner. The highly noisy regions of PCs are filtered at a 

primary step. Two different scenarios of high resolution and 

high spacing variability (H-H) and low resolution and low 

spacing variability (L-L) are studied. Six different types of 

features were defined and a classification model was trained. 

A primary unsupervised thresholding is proposed to find the 

most challenging points of the PC and apply the model on a 

limited number of points for reducing the computation load. 

 

 

 

(a)                                          (b) 

(a)                                          (b) 
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Fig. 12. (a, c) 3D representation of the initial detected points by unsupervised thresholding for L-L and H-H PCs respectively. 

Among these points, the highly noisy ones that were in the filtered list ( ) are illustrated in black colour. (b, d) The 

corresponding detected abnormalities by feature extraction and classification. 
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