69 research outputs found

    Regional Medical Campuses: Leveraging our Structure

    Get PDF
    The focus of this session presentation at the 2020 IU School of Medicine Education Day is on how the School is leveraging its regional campus model. The School is the nation’s largest by enrollment, with nine campuses, eight of which are considered regional campuses. After a review of various regional campus models, an example of scholarship that reports on how IU School of Medicine regional campus students perform in the Match compared to main (Indianapolis) campus students is shared. The session presentation also examines the unique way IU School of Medicine is leveraging a Scholarly Concentrations Program for educational enhancement, reputational focus for regional campuses, deeper community engagement, and increased student and faculty scholarship

    Selected Topics In Tort Law

    Get PDF
    This speaker series took place over several days during the Spring semester of 1990. The Special Problems of Causation in Toxic Tort Cases lecture given by Sheila L. Birnbaum, Partner in the New York City firm Skadden, Arps, Slate, Meagher, & Flom. (Tuesday, January 23, 1990) Damage Recovery in Toxic Tort Suits lecture given by Sheila L. Binbaum, Partner in the New York City firm Skadden, Arps, Slate, Meagher, & Flom. (Tuesday, January 30, 1990) Methods and Roles in Tort Lawmaking lecture given by The Honorable Robert Keeton, Langdell Professor Emeritus at Harvard Law School, U.S. District Court Judge for D. Mass. (Tuesday, February 13 and February 20, 1990) Procedural Innovations in and outside of the Courts and the Special Problems of Dignitary Torts lecture given by Richard Delgado, Professor of Law at the University of Wisconsin. (Date unknown) The Future of Tort Law lecture given by Deborah R. Hensler, Research Director of the Institute for Civil Justice at the RAND Corporation. (Date unknown

    The IUSM Scholarly Concentrations Program: Strategic Collaborative Education Across Schools and Departments

    Get PDF
    Presented as a poster at 2020 IUSM Education Day.A changing healthcare landscape calls for innovation and expansion of expertise in medical education. How does a medical school better prepare medical students to thrive in a changing profession? Through its Scholarly Concentrations Program, Indiana University School of Medicine is collaborating with non-physician experts from schools with expertise in topics that are medically relevant and of interest to medical students. Scholarly Concentrations are longitudinal experiences that enhance the medical education program through coursework and scholarly work. In addition to enhancing students’ education, it offers the opportunity to enhance campus reputation and develop research focus for students and faculty. Partnerships were created in both directions. IU School of Medicine sought out schools and departments with unique expertise on different medical campuses. Schools and departments also approached IU School of Medicine about its Scholarly Concentrations program as momentum built. These partnerships are creating mutual benefits for IUSM, partners, faculty and students. Benefits for partner organizations include mentoring opportunities, reputational enhancement, having an impact on healthcare system, and pathways to certificates and advanced degrees. For IUSM and its students, the partnerships enhance professional development through Scholarly Concentrations in areas of clinical, teaching, research, advocacy and administration

    Scholarly Concentrations: A Novel Platform for Delivery of Health Systems Science Exposure and Highlight Unique Learning Environments Across the Nine Campuses of Indiana University School of Medicine

    Get PDF
    Presented as a Poster at 2020 IUSM Education Day.Rapidly evolving challenges in health care mandate changes in the way health care professionals are educated. How do we integrate the need for new and different content into the medical school curriculum? One area of particular focus is called Health Systems Science. Health Systems Science is being called the 3rd leg of modern medical education to complement the foundational and clinical sciences curricula. IU School of Medicine is integrating Health Systems Science content into Scholarly Concentrations. Scholarly Concentrations is a program offering students longitudinal educational enhancement through coursework and scholarly work

    Scholarly Concentrations Program: A PRIME Approach to Addressing Care for the Medically Underserved and Vulnerable Populations

    Get PDF
    Examine how well the structure of the Scholarly Concentrations Program and content of each concentration relates to the goals of the federal Health Resources and Services Administration grant received to create more interest and prepare more medical school graduates to care for medically underserved and vulnerable populations. The grant funds the Primary Care Reaffirmation for Indiana Medical Education, or PRIME. project. A review of how concentrations align with the grant was conducted by reviewing program, concentration and course learning objectives and mapping to the grant objectives. Numerous concentrations were found to be an excellent fit, creating a PRIME opportunity to enhance the SC Program and move the needle on the grant objectives

    Medical School Without Walls: 50 Years of Regional Campuses at Indiana University School of Medicine

    Get PDF
    The history of Indiana University School of Medicine (IUSM) dates to 1871, when Indiana Medical College entered into an affiliation with Indiana University in Bloomington to offer medical education. In 1971, the Indiana General Assembly passed a bill to create and fund a distributed model for medical education for which IUSM was responsible, an innovative approach to implementing a statewide medical education program. IUSM became one of the first U.S. medical schools to implement what is today known as a regional medical campus model. This regional medical campus system has permitted IUSM to expand enrollment based on national and local concerns about physician shortages, increase access to care locally, support expansion of graduate medical education, and provide opportunities for research and scholarship by faculty and students statewide. This effort was made possible by partnerships with other universities and health care systems across the state and the support of local community and state leaders. The model is a forward-thinking and cost-effective way to educate physicians for service in the state of Indiana and is applicable to others. This article highlights milestones in IUSM’s 50-year history of regional medical education, describes the development of the regional medical campus model, recognizes significant achievements over the years, shares lessons learned, and discusses considerations for the future of medical education

    Differential Effects of Two Lots of Aroclor 1254 on Enzyme Induction, Thyroid Hormones, and Oxidative Stress

    Get PDF
    Aroclor 1254 is a commercial mixture of polychlorinated biphenyls (PCBs), which is defined as being 54% chlorine by weight. However, the congener composition varies from lot to lot. Two lots which have been used in toxicity studies, 124-191 and 6024 (AccuStandard), were analyzed for their congener composition. Lot 6024 has approximately 10 times the dioxin toxic equivalents (TEQ) of lot 124-191. The purpose of this study was to determine if the difference in the TEQ of the two lots explains the different in vivo responses seen on a weight basis. Male Long-Evans rats (70 days old) were treated orally with a single dose of 0-1,000 mg/kg of each lot. Hepatic ethoxy-, methoxy-, and pentoxyresorufin O-deethylase (EROD, MROD, and PROD, respectively) activities as well as serum thyroxine (T(4)) concentrations and measures of oxidative stress were determined 4 days after treatment. Results, on a weight basis, indicate that lot 6024 led to a greater induction of EROD, MROD, and PROD but not total T(4) reduction. The differences in TEQ between the lots explained the differential induction of EROD and MROD but did not account for the induction of PROD nor decreases in T(4). PROD induction is not due to dioxin-like congeners, whereas the decrease in serum T(4) levels may involve multiple mechanisms. Effects on the antioxidants ascorbic acid and uric acid were seen only at the highest mass dose for both lots and were not explained by the difference in TEQ. These results illustrate that the differences in the TEQ explain the differences in the strict dioxin-like effects (EROD, MROD induction), but the non-dioxin-like congeners cause other effects that are not associated with the aryl hydrocarbon receptor (e.g., PROD). In addition, supra-additive effects also occur in the mixture (T(4), oxidative stress). Thus, current results demonstrate that overall toxicity cannot be predicted on the basis of the TEQ values. It is also critical that the lot number is reported in studies conducted with Aroclor 1254 because the congener composition and therefore the effects observed can be very different

    Meeting Report: Moving Upstream—Evaluating Adverse Upstream End Points for Improved Risk Assessment and Decision-Making

    Get PDF
    Background Assessing adverse effects from environmental chemical exposure is integral to public health policies. Toxicology assays identifying early biological changes from chemical exposure are increasing our ability to evaluate links between early biological disturbances and subsequent overt downstream effects. A workshop was held to consider how the resulting data inform consideration of an “adverse effect” in the context of hazard identification and risk assessment. Objectives Our objective here is to review what is known about the relationships between chemical exposure, early biological effects (upstream events), and later overt effects (downstream events) through three case studies (thyroid hormone disruption, antiandrogen effects, immune system disruption) and to consider how to evaluate hazard and risk when early biological effect data are available. Discussion Each case study presents data on the toxicity pathways linking early biological perturbations with downstream overt effects. Case studies also emphasize several factors that can influence risk of overt disease as a result from early biological perturbations, including background chemical exposures, underlying individual biological processes, and disease susceptibility. Certain effects resulting from exposure during periods of sensitivity may be irreversible. A chemical can act through multiple modes of action, resulting in similar or different overt effects. Conclusions For certain classes of early perturbations, sufficient information on the disease process is known, so hazard and quantitative risk assessment can proceed using information on upstream biological perturbations. Upstream data will support improved approaches for considering developmental stage, background exposures, disease status, and other factors important to assessing hazard and risk for the whole population

    2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative

    Get PDF
    Objective The 1987 American College of Rheumatology (ACR; formerly, the American Rheumatism Association) classification criteria for rheumatoid arthritis (RA) have been criticized for their lack of sensitivity in early disease. This work was undertaken to develop new classification criteria for RA. Methods A joint working group from the ACR and the European League Against Rheumatism developed, in 3 phases, a new approach to classifying RA. The work focused on identifying, among patients newly presenting with undifferentiated inflammatory synovitis, factors that best discriminated between those who were and those who were not at high risk for persistent and/or erosive disease—this being the appropriate current paradigm underlying the disease construct “rheumatoid arthritis.” Results In the new criteria set, classification as “definite RA” is based on the confirmed presence of synovitis in at least 1 joint, absence of an alternative diagnosis that better explains the synovitis, and achievement of a total score of 6 or greater (of a possible 10) from the individual scores in 4 domains: number and site of involved joints (score range 0–5), serologic abnormality (score range 0–3), elevated acute-phase response (score range 0–1), and symptom duration (2 levels; range 0–1). Conclusion This new classification system redefines the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defining the disease by its late-stage features. This will refocus attention on the important need for earlier diagnosis and institution of effective disease-suppressing therapy to prevent or minimize the occurrence of the undesirable sequelae that currently comprise the paradigm underlying the disease construct “rheumatoid arthritis.”Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78045/1/27584_ftp.pd
    • …
    corecore