1,442 research outputs found

    A Chandra Study of the Lobe/ISM Interactions Around the Inner Radio Lobes of Centaurus A: Constraints on the Temperature Structure and Transport Processes

    Full text link
    We present results from deeper {\em Chandra} observations of the southwest radio lobe of Centaurus A, first described by Kraft et al. (2003). We find that the sharp X-ray surface brightness discontinuity extends around \sim75% of the periphery of the radio lobe, and detect significant temperature jumps in the brightest regions of this discontinuity nearest to the nucleus. This demonstrates that this discontinuity is indeed a strong shock which is the result of an overpressure which has built up in the entire lobe over time. Additionally, we demonstrate that if the mean free path for ions to transfer energy and momentum to the electrons behind the shock is as large as the Spitzer value, the electron and proton temperatures will not have equilibrated along the SW boundary of the radio lobe where the shock is strongest. Thus the proton temperature of the shocked gas could be considerably larger than the observed electron temperature, and the total energy of the outburst correspondingly larger as well. We investigate this using a simple one-dimensional shock model for a two-fluid (proton/electron) plasma. We find that for the thermodynamic parameters of the Cen A shock the electron temperature rises rapidly from \sim0.29 keV (the temperature of the ambient ISM) to \sim3.5 keV at which point heating from the protons is balanced by adiabatic losses. The proton and electron temperatures do not equilibrate in a timescale less than the age of the lobe. We note that the measured electron temperature of similar features in other nearby powerful radio galaxies in poor environments may considerably underestimate the strength and velocity of the shock.Comment: 29 pages, 9 figures, 2 tables - accepted for publication in the Astrophysical Journa

    A Merger Scenario for the Dynamics of Abell 665

    Get PDF
    We present new redshift measurements for 55 galaxies in the vicinity of the rich galaxy cluster Abell 665. When combined with results from the literature, we have good velocity measurements for a sample of 77 confirmed cluster members from which we derive the cluster's redshift z=0.1829 +/- 0.0005 and line-of-sight velocity dispersion of 1390 +/- 120 km/s. Our analysis of the kinematical and spatial data for the subset of galaxies located within the central 750 kpc reveals only subtle evidence for substructure and non-Gaussianity in the velocity distribution. We find that the brightest cluster member is not moving significantly relative to the other galaxies near the center of the cluster. On the other hand, our deep ROSAT high resolution image of A665 shows strong evidence for isophotal twisting and centroid variation, thereby confirming previous suggestions of significant substructure in the hot X-ray--emitting intracluster gas. In light of this evident substructure, we have compared the optical velocity data with N-body simulations of head-on cluster mergers. We find that a merger of two similar mass subclusters (mass ratios of 1:1 or 1:2) seen close to the time of core-crossing produces velocity distributions that are consistent with that observed.Comment: 30 pages and 7 figures. Accepted by the Astrophysical Journal Full resoultion figures 1 and 3 available in postscript at http://www.physics.rutgers.edu/~percy/A665paper.htm

    Numerical simulations of colliding jets in an external wind:application to 3C 75

    Get PDF
    The radio galaxy 3C 75 is remarkable because it contains a pair of radio-loud active galaxies, each of which produces a two-sided jet, with the jet beams appearing to collide and merge to the west of the galaxies. Motivated by 3C 75, we have conducted three-dimensional hydrodynamic simulations of jet collisions. We have extended previous studies by modelling the physical properties of the cluster atmosphere, including an external wind, and using realistic jet powers obtained from observational data. We are able to produce a morphology similar to that of 3C 75. The simulations imply that direct contact between the bulk jet flows on the west of the source is required to produce a morphology consistent with 3C 75. We quantify how the merging jets decelerate, how the wind deflects the jets and cocoons, the entrainment of intra-cluster material into the cocoons, the cocoon energetics, and how the jet interactions generate enstrophy. By comparing simulations of pairs of two-sided jets with those of single two-sided sources, we determine how the interaction between two bipolar jets changes their evolution. The unprecedented sensitivity and angular resolution of upcoming observatories will lead to the detection of many more complex sources at high redshift, where interacting jets are expected to be more numerous. The morphology of these complex sources can provide significant insight into the conditions in their environments

    Continuing a Chandra Survey of Quasar Radio Jets

    Full text link
    We are conducting an X-ray survey of flat spectrum radio quasars (FSRQs) with extended radio structures. We summarize our results from the first stage of our survey, then we present findings from its continuation. We have discovered jet X-ray emission from 12 of our first 20 Chandra targets, establishing that strong 0.5-7.0 keV emission is a common feature of FSRQ jets. The X-ray morphology is varied, but in general closely matches the radio structure until the first sharp radio bend. In the sources with optical data as well as X-ray detections we rule out simple synchrotron models for X-ray emission, suggesting these systems may instead be dominated by inverse Compton (IC) scattering. Fitting models of IC scattering of cosmic microwave background photons suggests that these jets are aligned within a few degrees of our line of sight, with bulk Lorentz factors of a few to ten and magnetic fields a bit stronger than 10510^{-5} G. In the weeks prior to this meeting, we have discovered two new X-ray jets at z>1z > 1. One (PKS B1055+201) has a dramatic, 2020''-long jet. The other (PKS B1421-490) appears unremarkable at radio frequencies, but at higher frequencies the jet is uniquely powerful: its optically-dominated, with jet/core flux ratios of 3.7 at 1 keV and 380 at 480 nm.Comment: 4 pages, 8 figures. To appear in `X-Ray and Radio Connections', ed. L.O. Sjouwerman and K.K. Dyer (published electronicly at http://www.aoc.nrao.edu/events/xraydio/). Additional material and higher resolution figures may be found at http://space.mit.edu/home/jonathan/jets

    Improving bank erosion modelling at catchment scale by incorporating temporal and spatial variability

    Get PDF
    Bank erosion can contribute a significant portion of the sediment budget within temperate catchments, yet few catchment scale models include an explicit representation of bank erosion processes. Furthermore, representation is often simplistic resulting in an inability to capture realistic spatial and temporal variability in simulated bank erosion. In this study, the sediment component of the catchment scale model SHETRAN is developed to incorporate key factors influencing the spatio-temporal rate of bank erosion, due to the effects of channel sinuosity and channel bank vegetation. The model is applied to the Eden catchment, north-west England, and validated using data derived from a GIS methodology. The developed model simulates magnitudes of total catchment annual bank erosion (617 - 4063 t yr-1) within the range of observed values (211 - 4426 t yr-1). Additionally the model provides both greater inter-annual and spatial variability of bank eroded sediment generation when compared with the basic model, and indicates a potential 61% increase of bank eroded sediment as a result of temporal flood clustering. The approach developed within this study can be used within a number of distributed hydrologic models and has general applicability to temperate catchments, yet further development of model representation of bank erosion processes is required

    Spatially dispersed corporate headquarters: a historical analysis of their prevalence, antecedents, and consequences

    Get PDF
    Our study, which complements recent works challenging the traditional conceptualization of the CHQ as a single organizational unit, has a dual purpose. First, in descriptive terms, we set out to explore the prevalence of spatially dispersed CHQs in a historical context. Second, we aim to shed additional light on the CHQ’s spatial design by exploring internal antecedents and potential consequences. Building on arguments from information-processing theory, we propose that the strategic complexity facing the CHQ (affecting its information-processing demands) is associated with the likelihood of a spatially dispersed CHQ (affecting its information-processing capacity). In line with our dual purpose, we conduct a historical study drawing on survey and archival data covering 156 public firms domiciled in four countries (Germany, the Netherlands, the UK, and the US) in the late 1990s. Our results provide empirical support for the hypothesized associations between strategic complexity and the CHQ’s spatial design. Moreover, although we find no empirical support for the expected contingency effects, the results suggest that a spatially dispersed CHQ can have negative effects on CHQ and firm performance. Overall, our theoretical arguments and empirical results advance our knowledge about complex CHQ configurations

    The XXL Survey VIII: MUSE characterisation of intracluster light in a z\sim0.53 cluster of galaxies

    Get PDF
    Within a cluster, gravitational effects can lead to the removal of stars from their parent galaxies. Gas hydrodynamical effects can additionally strip gas and dust from galaxies. The properties of the ICL can therefore help constrain the physical processes at work in clusters by serving as a fossil record of the interaction history. The present study is designed to characterise this ICL in a ~10^14 M_odot and z~0.53 cluster of galaxies from imaging and spectroscopic points of view. By applying a wavelet-based method to CFHT Megacam and WIRCAM images, we detect significant quantities of diffuse light. These sources were then spectroscopically characterised with MUSE. MUSE data were also used to compute redshifts of 24 cluster galaxies and search for cluster substructures. An atypically large amount of ICL has been detected in this cluster. Part of the detected diffuse light has a very weak optical stellar component and apparently consists mainly of gas emission, while other diffuse light sources are clearly dominated by old stars. Furthermore, emission lines were detected in several places of diffuse light. Our spectral analysis shows that this emission likely originates from low-excitation parameter gas. The stellar contribution to the ICL is about 2.3x10^9 yrs old even though the ICL is not currently forming a large number of stars. On the other hand, the contribution of the gas emission to the ICL in the optical is much greater than the stellar contribution in some regions, but the gas density is likely too low to form stars. These observations favour ram pressure stripping, turbulent viscous stripping, or supernovae winds as the origin of the large amount of intracluster light. Since the cluster appears not to be in a major merging phase, we conclude that ram pressure stripping is the most plausible process that generates the observed ICL sources.Comment: Accepted in A&A, english enhanced, figure location different than in the A&A version due to different style files, shortened abstrac

    The fading of two transient ultraluminous x-ray sources to below the stellar mass Eddington limit

    Get PDF
    We report new detections of the two transient ultraluminous X-ray sources (ULXs) in NGC 5128 from an ongoing series of Chandra observations. Both sources have previously been observed L (2-3) × ∼10 erg s, at the lower end of the ULX luminosity range. The new observations allow us to study these sources in the luminosity regime frequented by the Galactic black hole X-ray binaries (BH XBs). We present the recent lightcurves of both ULXs. 1RXH J132519.8-430312 (ULX1) was observed at L 1 × 10 erg s, while CXOU J132518.2-430304 (ULX2) declined to L 2 × 10 erg s and then lingered at this luminosity for hundreds of days. We show that a reasonable upper limit for both duty cycles is 0.2, with a lower limit of 0.12 for ULX2. This duty cycle is larger than anticipated for transient ULXs in old stellar populations. By fitting simple spectral models in an observation with ∼50 counts we recover properties consistent with Galactic BH XBs, but inconclusive as to the spectral state. We utilize quantile analyses to demonstrate that the spectra are generally soft, and that in one observation the spectrum of ULX2 is inconsistent with a canonical hard state at >95% confidence. This is contrary to what would be expected of an accreting intermediate mass black hole primary, which we would expect to be in the hard state at these luminosities. We discuss the paucity of transient ULXs discovered in early-type galaxies and excogitate explanations. We suggest that the number of transient ULXs scales with the giant and sub-giant populations, rather than the total number of XBs.Peer reviewe

    Discovery of an X-ray Jet and Extended Jet Structure in the Quasar PKS 1055+201

    Get PDF
    This letter reports rich X-ray jet structures found in the Chandra observation of PKS 1055+201. In addition to an X-ray jet coincident with the radio jet we detect a region of extended X-ray emission surrounding the jet as far from the core as the radio hotspot to the North, and a similar extended X-ray region along the presumed path of the unseen counterjet to the Southern radio lobe. Both X-ray regions show a similar curvature to the west, relative to the quasar. We interpret this as the first example where we separately detect the X-ray emission from a narrow jet and extended, residual jet plasma over the entire length of a powerful FRII jet.Comment: Accepted for publication in Ap. J. Letters. 4 pages, 3 figure

    Large Scale Structure traced by Molecular Gas at High Redshift

    Full text link
    We present observations of redshifted CO(1-0) and CO(2-1) in a field containing an overdensity of Lyman break galaxies (LBGs) at z=5.12. Our Australia Telescope Compact Array observations were centered between two spectroscopically-confirmed z=5.12 galaxies. We place upper limits on the molecular gas masses in these two galaxies of M(H_2) <1.7 x 10^10 M_sun and <2.9 x 10^9 M_sun (2 sigma), comparable to their stellar masses. We detect an optically-faint line emitter situated between the two LBGs which we identify as warm molecular gas at z=5.1245 +/- 0.0001. This source, detected in the CO(2-1) transition but undetected in CO(1-0), has an integrated line flux of 0.106 +/- 0.012 Jy km/s, yielding an inferred gas mass M(H_2)=(1.9 +/- 0.2) x 10^10 M_sun. Molecular line emitters without detectable counterparts at optical and infrared wavelengths may be crucial tracers of structure and mass at high redshift.Comment: 4 pages, accepted for publication in ApJ Letter
    corecore