1,027 research outputs found

    Effect of Gravitational Lensing on Measurements of the Sunyaev-Zel'dovich Effect

    Full text link
    The Sunyaev-Zel'dovich (SZ) effect of a cluster of galaxies is usually measured after background radio sources are removed from the cluster field. Gravitational lensing by the cluster potential leads to a systematic deficit in the residual intensity of unresolved sources behind the cluster core relative to a control field far from the cluster center. As a result, the measured decrement in the Rayleigh-Jeans temperature of the cosmic microwave background is overestimated. We calculate the associated systematic bias which is inevitably introduced into measurements of the Hubble constant using the SZ effect. For the cluster A2218, we find that observations at 15 GHz with a beam radius of 0'.4 and a source removal threshold of 100 microJy underestimate the Hubble constant by 6-10%. If the profile of the gas pressure declines more steeply with radius than that of the dark matter density, then the ratio of lensing to SZ decrements increases towards the outer part of the cluster.Comment: 11 pages, 3 figures, submitted to ApJ

    Constraints in Cosmological Parameter Space from the Sunyaev-Zel'dovich Effect and Thermal Bremsstrahlung

    Get PDF
    We discuss how the space of possible cosmological parameters is constrained by the angular diameter distance function, D_A(z), as measured using the SZ/X-ray method which combines Sunyaev-Zel'dovich (SZ) effect and X-ray brightness data for clusters of galaxies. New X-ray satellites, and ground-based interferometers dedicated to SZ observations, should soon lead to D_A(z) measurements limited by systematic rather than random error. We analyze the systematic and random error budgets to make a realistic estimate of the accuracy achievable in the determination of (Omega_m,Lambda,h), the density parameters of matter and cosmological constant, and the dimensionless Hubble constant, using D_A(z) derived from the SZ/X-ray method, and the position of the first ``Doppler'' peak in the cosmic microwave background fluctuations. We briefly study the effect of systematic errors. We find that Omega_m, Lambda, and w are affected, but h is not by systematic errors which grow with redshift. With as few as 70 clusters, each providing a measurement of D_A(z) with a 7% random and 5% systematic error, Omega_m can be constrained to +/-0.2, Lambda to +/-0.2, and h to +/-0.11 (all at 3 sigma). We also estimate constraints for the alternative three-parameter set (Omega_m,w,h), where w is the equation of state parameter. The measurement of D_A(z) provides constraints complementary to those from the number density of clusters in redshift space. A sample of 70 clusters (D_A measured with the same accuracy as before) combined with cluster evolution results (or a known matter density), can constrain w within +/-0.45 (at 3 sigma). Studies of X-ray and SZ properties of clusters of galaxies promise an independent and powerful test for cosmological parameters

    A Merger Scenario for the Dynamics of Abell 665

    Get PDF
    We present new redshift measurements for 55 galaxies in the vicinity of the rich galaxy cluster Abell 665. When combined with results from the literature, we have good velocity measurements for a sample of 77 confirmed cluster members from which we derive the cluster's redshift z=0.1829 +/- 0.0005 and line-of-sight velocity dispersion of 1390 +/- 120 km/s. Our analysis of the kinematical and spatial data for the subset of galaxies located within the central 750 kpc reveals only subtle evidence for substructure and non-Gaussianity in the velocity distribution. We find that the brightest cluster member is not moving significantly relative to the other galaxies near the center of the cluster. On the other hand, our deep ROSAT high resolution image of A665 shows strong evidence for isophotal twisting and centroid variation, thereby confirming previous suggestions of significant substructure in the hot X-ray--emitting intracluster gas. In light of this evident substructure, we have compared the optical velocity data with N-body simulations of head-on cluster mergers. We find that a merger of two similar mass subclusters (mass ratios of 1:1 or 1:2) seen close to the time of core-crossing produces velocity distributions that are consistent with that observed.Comment: 30 pages and 7 figures. Accepted by the Astrophysical Journal Full resoultion figures 1 and 3 available in postscript at http://www.physics.rutgers.edu/~percy/A665paper.htm

    Unmasking the Active Galactic Nucleus in PKS J2310-437

    Full text link
    PKS J2310-437 is an AGN with bright X-ray emission relative to its weak radio emission and optical continuum. It is believed that its jet lies far enough from the line of sight that it is not highly relativistically beamed. It thus provides an extreme test of AGN models. We present new observations aimed at refining the measurement of the source's properties. In optical photometry with the NTT we measure a central excess with relatively steep spectrum lying above the bright elliptical galaxy emission, and we associate the excess wholly or in part with the AGN. A new full-track radio observation with the ATCA finds that the core 8.64GHz emission has varied by about 20 per cent over 38 months, and improves the mapping of the weak jet. With Chandra we measure a well-constrained power-law spectral index for the X-ray core, uncontaminated by extended emission from the cluster environment, with a negligible level of intrinsic absorption. Weak X-ray emission from the resolved radio jet is also measured. Our analysis suggests that the optical continuum in this radio galaxy has varied by at least a factor of four over a timescale of about two years, something that should be testable with further observations. We conclude that the most likely explanation for the bright central X-ray emission is synchrotron radiation from high-energy electrons.Comment: 7 pages, 12 figure

    The Dynamical State fo the Starless Dense Core FeSt 1-457: A Pulsating Globule?

    Full text link
    High resolution molecular line observations of CS, HCO+, C18O and N2H+ were obtained toward the starless globule FeSt 1-457 in order to investigate its kinematics and chemistry. The HCO+ and CS spectra show clear self-reversed and asymmetric profiles across the face of the globule. The sense of the observed asymmetry is indicative of the global presence of expansion motions in the outer layers of the globule. These motions appear to be subsonic and significantly below the escape velocity of the globule. Comparison of our observations with near-infrared extinction data indicate that the globule is gravitationally bound. Taken together these considerations lead us to suggest that the observed expansion has its origin in an oscillatory motion of the outer layers of the globule which itself is likely in a quasi-stable state near hydrostatic equilibrium. Analysis of the observed linewidths of CO and N2H+ confirm that thermal pressure is the dominant component of the cloud's internal support. A simple calculation suggests that the dominant mode of pulsation would be an l = 2 mode with a period of 0.3 Myr. Deformation of the globule due to the large amplitude l = 2 oscillation may be responsible for the double-peaked structure of the core detected in high resolution extinction maps. Detailed comparison of the molecular-line observations and extinction data provides evidence for significant depletion of C18O and perhaps HCO+ while N2H+ may be undepleted to a cloud depth of about 40 magnitudes of visual extinction.Comment: to appear in ApJ vol 665 20 August 2007

    Constraints on the Energy Content of the Universe from a Combination of Galaxy Cluster Observables

    Full text link
    We demonstrate that constraints on cosmological parameters from the distribution of clusters as a function of redshift (dN/dz) are complementary to accurate angular diameter distance (D_A) measurements to clusters, and their combination significantly tightens constraints on the energy density content of the Universe. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Zel'dovich effect) surveys, and the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect. We combine constraints from simulated cluster number counts expected from a 12 deg^2 SZ cluster survey and constraints from simulated angular diameter distance measurements based on the X-ray/SZ method assuming a statistical accuracy of 10% in the angular diameter distance determination of 100 clusters with redshifts less than 1.5. We find that Omega_m can be determined within about 25%, Omega_Lambda within 20%, and w within 16%. We show that combined dN/dz + D_A constraints can be used to constrain the different energy densities in the Universe even in the presence of a few percent redshift dependent systematic error in D_A. We also address the question of how best to select clusters of galaxies for accurate diameter distance determinations. We show that the joint dN/dz + D_A constraints on cosmological parameters for a fixed target accuracy in the energy density parameters are optimized by selecting clusters with redshift upper cut--offs in the range 0.5 < z < 1.Comment: LateX, 6 pages, 5 figures. Accepted for publication in The Astrophysical Journa

    A Chandra Study of the Lobe/ISM Interactions Around the Inner Radio Lobes of Centaurus A: Constraints on the Temperature Structure and Transport Processes

    Full text link
    We present results from deeper {\em Chandra} observations of the southwest radio lobe of Centaurus A, first described by Kraft et al. (2003). We find that the sharp X-ray surface brightness discontinuity extends around \sim75% of the periphery of the radio lobe, and detect significant temperature jumps in the brightest regions of this discontinuity nearest to the nucleus. This demonstrates that this discontinuity is indeed a strong shock which is the result of an overpressure which has built up in the entire lobe over time. Additionally, we demonstrate that if the mean free path for ions to transfer energy and momentum to the electrons behind the shock is as large as the Spitzer value, the electron and proton temperatures will not have equilibrated along the SW boundary of the radio lobe where the shock is strongest. Thus the proton temperature of the shocked gas could be considerably larger than the observed electron temperature, and the total energy of the outburst correspondingly larger as well. We investigate this using a simple one-dimensional shock model for a two-fluid (proton/electron) plasma. We find that for the thermodynamic parameters of the Cen A shock the electron temperature rises rapidly from \sim0.29 keV (the temperature of the ambient ISM) to \sim3.5 keV at which point heating from the protons is balanced by adiabatic losses. The proton and electron temperatures do not equilibrate in a timescale less than the age of the lobe. We note that the measured electron temperature of similar features in other nearby powerful radio galaxies in poor environments may considerably underestimate the strength and velocity of the shock.Comment: 29 pages, 9 figures, 2 tables - accepted for publication in the Astrophysical Journa

    The structure of the jet in 3C 15 from multi-band polarimetry

    Get PDF
    We investigate the structure of the kpc-scale jet in the nearby (z = 0.073) radio galaxy 3C 15, using new optical Hubble Space Telescope (HST) ACS/F606W polarimetry together with archival multi-band HST imaging, Chandra X-ray data and 8.4 GHz VLA radio polarimetry. The new data confirm that synchrotron radiation dominates in the optical. With matched beams, the jet is generally narrower in the optical than in the radio, suggesting a stratified flow. We examine a simple two-component model comprising a highly relativistic spine and lower-velocity sheath. This configuration is broadly consistent with polarization angle differences seen in the optical and radio data. The base of the jet is relatively brighter in the ultraviolet and X-ray than at lower energies, and the radio and optical polarization angles vary significantly as the jet brightens downstream. Further out, the X-ray intensity rises again and the apparent magnetic field becomes simpler, indicating a strong shock. Modelling the synchrotron spectrum of this brightest X-ray knot provides an estimate of its minimum internal pressure, and a comparison with the thermal pressure from X-ray emitting gas shows that the knot is overpressured and likely to be a temporary, expanding feature.Comment: 12 pages, 7 figures, accepted by MNRA

    The XXL Survey VIII: MUSE characterisation of intracluster light in a z\sim0.53 cluster of galaxies

    Get PDF
    Within a cluster, gravitational effects can lead to the removal of stars from their parent galaxies. Gas hydrodynamical effects can additionally strip gas and dust from galaxies. The properties of the ICL can therefore help constrain the physical processes at work in clusters by serving as a fossil record of the interaction history. The present study is designed to characterise this ICL in a ~10^14 M_odot and z~0.53 cluster of galaxies from imaging and spectroscopic points of view. By applying a wavelet-based method to CFHT Megacam and WIRCAM images, we detect significant quantities of diffuse light. These sources were then spectroscopically characterised with MUSE. MUSE data were also used to compute redshifts of 24 cluster galaxies and search for cluster substructures. An atypically large amount of ICL has been detected in this cluster. Part of the detected diffuse light has a very weak optical stellar component and apparently consists mainly of gas emission, while other diffuse light sources are clearly dominated by old stars. Furthermore, emission lines were detected in several places of diffuse light. Our spectral analysis shows that this emission likely originates from low-excitation parameter gas. The stellar contribution to the ICL is about 2.3x10^9 yrs old even though the ICL is not currently forming a large number of stars. On the other hand, the contribution of the gas emission to the ICL in the optical is much greater than the stellar contribution in some regions, but the gas density is likely too low to form stars. These observations favour ram pressure stripping, turbulent viscous stripping, or supernovae winds as the origin of the large amount of intracluster light. Since the cluster appears not to be in a major merging phase, we conclude that ram pressure stripping is the most plausible process that generates the observed ICL sources.Comment: Accepted in A&A, english enhanced, figure location different than in the A&A version due to different style files, shortened abstrac

    A Flare in the Jet of Pictor A

    Get PDF
    A Chandra X-ray imaging observation of the jet in Pictor A showed a feature that appears to be a flare that faded between 2000 and 2002. The feature was not detected in a follow-up observation in 2009. The jet itself is over 150 kpc long and a kpc wide, so finding year-long variability is surprising. Assuming a synchrotron origin of the observed high-energy photons and a minimum energy condition for the outflow, the synchrotron loss time of the X-ray emitting electrons is of order 1200 yr, which is much longer than the observed variability timescale. This leads to the possibility that the variable X-ray emission arises from a very small sub-volume of the jet, characterized by magnetic field that is substantially larger than the average over the jet.Comment: 12 pages, 3 figures, to appear in Ap. J. Letter
    corecore