22 research outputs found

    Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS<sub>2</sub>), which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling.</p> <p>Methods</p> <p>Female Sprague-Dawley (SD) rats (n = 84, age = 20 weeks) were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS<sub>2 </sub>(controls) or diets high in RS<sub>2 </sub>(18% by weight) throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD) and bone mineral content (BMC) of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry.</p> <p>Results</p> <p>Rats undergoing weight cycling had lower femur BMC (p < 0.05) and marginally lower BMD (p = 0.09) than rats not undergoing weight cycling. In comparison to controls, rats fed RS<sub>2 </sub>had higher femur BMD (p < 0.01) and BMC (p < 0.05), as well as higher values for BMD and BMC measured at the distal end (p < 0.001 and p < 0.01) and femoral neck (p < 0.01 and p < 0.05). Consistent with these findings, RS<sub>2</sub>-fed rats also had higher femur calcium (p < 0.05) and magnesium (p < 0.0001) concentrations. They also had higher lumbar vertebrae calcium (p < 0.05) and magnesium (p < 0.05) concentrations.</p> <p>Conclusion</p> <p>Weight cycling reduces bone mass. A diet high in RS<sub>2 </sub>can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.</p

    Applying genetic technologies to combat infectious diseases in aquaculture

    Get PDF
    Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies—sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/ parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.publishedVersio

    Metabolite profiling reveals new insights into the regulation of serum urate in humans

    Get PDF
    Albrecht E, Waldenberger M, Krumsiek J, et al. Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics. 2013;10(1):141-151.Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia

    AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture

    Get PDF
    The future of agricultural research depends on data. The sheer volume of agricultural biological data being produced today makes excellent data management essential. Governmental agencies, publishers and science funders require data management plans for publicly funded research. Furthermore, the value of data increases exponentially when they are properly stored, described, integrated and shared, so that they can be easily utilized in future analyses. AgBioData (https://www.agbiodata.org) is a consortium of people working at agricultural biological databases, data archives and knowledgbases who strive to identify common issues in database development, curation and management, with the goal of creating database products that are more Findable, Accessible, Interoperable and Reusable. We strive to promote authentic, detailed, accurate and explicit communication between all parties involved in scientific data. As a step toward this goal, we present the current state of biocuration, ontologies, metadata and persistence, database platforms, programmatic (machine) access to data, communication and sustainability with regard to data curation. Each section describes challenges and opportunities for these topics, along with recommendations and best practices

    Resistant starch and health

    No full text
    Dietary starch is being re-assessed for its contribution to health. No tonly does digestible starch provide energy via traditional metabolic pathways, but some sub-types, collectively called RS, can contribute to health via fermentation related pathways
    corecore