24 research outputs found

    Synergism of sulfur availability and agronomic nitrogen use efficiency

    Get PDF
    Nutrient management strategies that exploit nutrient elements’ synergistic interaction to enhance nitrogen use efficiency (NUE) are needed for economic and environmental reasons. A field study was carried out during the 2020–2022 growing seasons at six locations in three countries: two each in the United States, Ghana, and Mali using three sulfur (S) sources with different bioavailability levels (micronized elemental S, untreated elemental S, and ammonium sulfate); applied at five S application rates: site-specific recommended S rate (SR), 25%, 50%, 75%, and 125% of SR; and a single nitrogen (N) application rate (site-specific recommended N rate) to comprehensively investigate the influence of S availability on NUE. Specific objectives were to evaluate the impact of S availability on corn (Zea mays L.) yield, N uptake, and NUE. Regardless of the S source and experimental site, the aboveground S and N uptake were strongly and positively correlated (r > 0.88). Increases in apparent N recovery efficiency and agronomic NUE occurred with corresponding increases in S application rate, irrespective of the site and S source. The combined data showed that the agronomic efficiency of applied N fertilizer sources could be enhanced significantly by increasing S availability in soils. With the rising N fertilizer costs in recent times, N losses from the applied fertilizer are a drain on farmers’ income and of environmental concern. Thus, increasing NUE is a needed strategy to safeguard against excessive N application, increase farm profits, and minimize N losses to the environment that could disrupt the ecosystem function

    A feasibility study using time-driven activity-based costing as a management tool for provider cost estimation: lessons from the national TB control program in Zimbabwe in 2018.

    Get PDF
    BACKGROUND: Insufficient cost data and limited capacity constrains the understanding of the actual resources required for effective TB control. This study used process maps and time-driven activity-based costing to document TB service delivery processes. The analysis identified the resources required to sustain TB services in Zimbabwe, as well as several opportunities for more effective and efficient use of available resources. METHODS: A multi-disciplinary team applied time-driven activity-based costing (TDABC) to develop process maps and measure the cost of clinical pathways used for Drug Susceptible TB (DS-TB) at urban polyclinics, rural district and provincial hospitals, and community based targeted screening for TB (Tas4TB). The team performed interviews and observations to collect data on the time taken by health care worker-patient pairs at every stage of the treatment pathway. The personnel's practical capacity and capacity cost rates were calculated on five cost domains. An MS Excel model calculated diagnostic and treatment costs. FINDINGS: Twenty-five stages were identified in the TB care pathway across all health facilities except for community targeted screening for TB. Considerable variations were observed among the facilities in how health care professionals performed client registration, taking of vital signs, treatment follow-up, dispensing medicines and processing samples. The average cost per patient for the entire DS-TB care was USD324 with diagnosis costing USD69 and treatment costing USD255. The average cost for diagnosis and treatment was higher in clinics than in hospitals (USD392 versus USD256). Nurses in clinics were 1.6 time more expensive than in hospitals. The main cost components were personnel (USD130) and laboratory (USD119). Diagnostic cost in Tas4TB was twice that of health facility setting (USD153 vs USD69), with major cost drivers being demand creation (USD89) and sputum specimen transportation (USD5 vs USD3). CONCLUSION: TDABC is a feasible and effective costing and management tool in low-resource settings. The TDABC process maps and treatment costs revealed several opportunities for innovative improvements in the NTP under public health programme settings. Re-engineering laboratory testing processes and synchronising TB treatment follow-up with antiretroviral treatments could produce better and more uniform TB treatments at significantly lower cost in Zimbabwe

    Hip thrust and back squat training elicit similar gluteus muscle hypertrophy and transfer similarly to the deadlift

    Get PDF
    We examined how set-volume equated resistance training using either the back squat (SQ) or hip thrust (HT) affected hypertrophy and various strength outcomes. Untrained college-aged participants were randomized into HT (n = 18) or SQ (n = 16) groups. Surface electromyograms (sEMG) from the right gluteus maximus and medius muscles were obtained during the first training session. Participants completed 9 weeks of supervised training (15–17 sessions), before and after which gluteus and leg muscle cross-sectional area (mCSA) was assessed via magnetic resonance imaging. Strength was also assessed prior to and after the training intervention via three-repetition maximum (3RM) testing and an isometric wall push test. Gluteus mCSA increases were similar across both groups. Specifically, estimates [(−) favors HT (+) favors SQ] modestly favored the HT versus SQ for lower [effect ±SE, −1.6 ± 2.1 cm2; CI95% (−6.1, 2.0)], mid [−0.5 ± 1.7 cm2; CI95% (−4.0, 2.6)], and upper [−0.5 ± 2.6 cm2; CI95% (−5.8, 4.1)] gluteal mCSAs but with appreciable variance. Gluteus medius + minimus [−1.8 ± 1.5 cm2; CI95% (−4.6, 1.4)] and hamstrings [0.1 ± 0.6 cm2; CI95% (−0.9, 1.4)] mCSA demonstrated little to no growth with small differences between groups. mCSA changes were greater in SQ for the quadriceps [3.6 ± 1.5 cm2; CI95% (0.7, 6.4)] and adductors [2.5 ± 0.7 cm2; CI95% (1.2, 3.9)]. Squat 3RM increases favored SQ [14 ± 2 kg; CI95% (9, 18),] and hip thrust 3RM favored HT [−26 ± 5 kg; CI95% (−34, −16)]. 3RM deadlift [0 ± 2 kg; CI95% (−4, 3)] and wall push strength [−7 ± 12N; CI95% (−32, 17)] similarly improved. All measured gluteal sites showed greater mean sEMG amplitudes during the first bout hip thrust versus squat set, but this did not consistently predict gluteal hypertrophy outcomes. Squat and hip thrust training elicited similar gluteal hypertrophy, greater thigh hypertrophy in SQ, strength increases that favored exercise allocation, and similar deadlift and wall push strength increases

    Amendments to control phosphorus mobility

    No full text
    vokViestintä ja informaatiopalvelut, MTT 31600 Jokioine

    Improving agronomic effectiveness of elemental sulfur to increase productivity in sulfur-deficient soils

    Get PDF
    Elemental sulfur (ES), a byproduct of oil and gas processing, could be an alternate sulfur (S) fertilizer source for crop production if its bioavailability is improved. Increasing the specific surface of ES by reducing its particle size can accelerate ES oxidation to enhance its bioavailability. In field trials at six locations across three countries: two each in the United States, Ghana, and Mali, we determined the agronomic effectiveness of micronized ES (MES). Specific objectives were to quantify (i) corn (Zea mays L.) productivity, (ii) S recovery, and (iii) residual soil S concentration; following MES application, compared to ammonium sulfate (AS), a commercially available sulfate fertilizer, at four application rates—(i) locally recommended sulfur application rate (SR), (ii) 50%_SR, (iii) 75%_SR, and (iv) 125%_SR—and a control where no S was applied. Averaged across all sites and in the three growing seasons, AS at 50%_SR increased corn yield by ≤8% relative to control. Increasing to 75%_SR, SR, and 125%_SR resulted in 12%, 26%, and 28% yield increases, respectively. Applying MES at 50%_SR increased yield by ≤6%, and at 75%_SR, yield increased by ≤26%. Increasing the S application rate to SR and 125%_SR resulted in marginal yield increases. The combined data suggest that MES can be applied at a reduced rate of 75_SR to achieve similar yields as AS applied at SR. We conclude that MES could be an efficient S fertilizer alternative. However, economic analysis is needed to determine the potential profitability of using MES fertilizer products for crop production

    Long-term phosphorus immobilization by a drinking water treatment residual

    No full text
    Excessive soluble P in runoff is a common cause of eutrophication in fresh waters. Evidence indicates that drinking water treatment residuals (WTRs) can reduce soluble P concentrations in P-impacted soils in the short term (days to weeks). The long-term (years) stability of WTR-immobilized P has been inferred, but validating field data are scarce. This research was undertaken at two Michigan field sites with a history of heavy manure applications to study the longevity of alum-based WTR (Al-WTR) effects on P solubility over time (7.5 yr). At both sites, amendment with Al-WTR reduced water-soluble P (WSP) concentration by ≥60% as compared to the control plots, and the Al-WTR-immobilized P (WTR-P) remained stable 7.5 yr after Al-WTR application. Rainfall simulation techniques were utilized to investigate P losses in runoff and leachate from surface soils of the field sites at 7.5 yr after Al-WTR application. At both sites, amendment with Al-WTR reduced dissolved P and bioavailable P (BAP) by >50% as compared to the control plots, showing that WTR-immobilized P remained nonlabile even 7.5 yr after Al-WTR amendment. Thus, WTR-immobilized P would not be expected to dissolve into runoff and leachate to contaminate surface waters or ground water. Even if WTR-P is lost via erosion to surface waters, the bioavailability of the immobilized P should be minimal and should have negligible effects on water quality. However, if the WTR particles are destroyed by extreme conditions, P loss to water could pose a eutrophication risk

    Long-term phosphorus immobilization by a drinking water treatment residual

    No full text
    Excessive soluble P in runoff is a common cause of eutrophication in fresh waters. Evidence indicates that drinking water treatment residuals (WTRs) can reduce soluble P concentrations in P-impacted soils in the short term (days to weeks). The long-term (years) stability of WTR-immobilized P has been inferred, but validating field data are scarce. This research was undertaken at two Michigan field sites with a history of heavy manure applications to study the longevity of alum-based WTR (Al-WTR) effects on P solubility over time (7.5 yr). At both sites, amendment with Al-WTR reduced water-soluble P (WSP) concentration by ≥60% as compared to the control plots, and the Al-WTR-immobilized P (WTR-P) remained stable 7.5 yr after Al-WTR application. Rainfall simulation techniques were utilized to investigate P losses in runoff and leachate from surface soils of the field sites at 7.5 yr after Al-WTR application. At both sites, amendment with Al-WTR reduced dissolved P and bioavailable P (BAP) by >50% as compared to the control plots, showing that WTR-immobilized P remained nonlabile even 7.5 yr after Al-WTR amendment. Thus, WTR-immobilized P would not be expected to dissolve into runoff and leachate to contaminate surface waters or ground water. Even if WTR-P is lost via erosion to surface waters, the bioavailability of the immobilized P should be minimal and should have negligible effects on water quality. However, if the WTR particles are destroyed by extreme conditions, P loss to water could pose a eutrophication risk
    corecore