184 research outputs found

    The clinical profile of moderate amblyopia in children younger than 7 years

    Get PDF
    Objective To describe the demographic and clinical characteristics of a cohort of children with moderate amblyopia participating in the Amblyopia Treatment Study 1, a randomized trial comparing atropine and patching. Methods The children enrolled were younger than 7 years and had strabismic, anisometropic, or combined strabismic and anisometropic amblyopia. Visual acuity, measured with a standardized testing protocol using single-surround HOTV optotypes, was 20/40 to 20/100 in the amblyopic eye, with an intereye acuity difference of 3 or more logMAR lines. There were 419 children enrolled, 409 of whom met these criteria and were included in the analyses. Results The mean age of the 409 children was 5.3 years. The cause of the amblyopia was strabismus in 38%, anisometropia in 37%, and both strabismus and anisometropia in 24%. The mean visual acuity of the amblyopic eyes (approximately 20/60) was similar among the strabismic, anisometropic, and combined groups (P = .24), but visual acuity of the sound eyes was worse in the strabismic group compared with the anisometropic group (P<.001). For the patients randomized into the patching group, 43% were initially treated for 6 hours per day, whereas 17% underwent full-time patching. Patients with poorer visual acuity in the amblyopic eye were prescribed more hours of patching than patients with better acuity (P = .003). Conclusions In the Amblyopia Treatment Study 1, there were nearly equal proportions of patients with strabismic and anisometropic amblyopia. A similar level of visual impairment was found irrespective of the cause of amblyopia. There was considerable variation in treatment practices with regard to the number of hours of initial patching prescribed

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure

    A deep dive into the ecology of Gamay (Botany Bay, Australia): current knowledge and future priorities for this highly modified coastal waterway

    Get PDF
    Context: Gamay is a coastal waterway of immense social, cultural and ecological value. Since European settlement, it has become a hub for industrialisation and human modification. There is growing desire for ecosystem-level management of urban waterways, but such efforts are often challenged by a lack of integrated knowledge. Aim and methods: We systematically reviewed published literature and traditional ecological knowledge (TEK), and consulted scientists to produce a review of Gamay that synthesises published knowledge of Gamay’s aquatic ecosystem to identify knowledge gaps and future research opportunities. Key results: We found 577 published resources on Gamay, of which over 70% focused on ecology. Intertidal rocky shores were the most studied habitat, focusing on invertebrate communities. Few studies considered multiple habitats or taxa. Studies investigating cumulative human impacts, long-term trends and habitat connectivity are lacking, and the broader ecological role of artificial substrate as habitat in Gamay is poorly understood. TEK of Gamay remains a significant knowledge gap. Habitat restoration has shown promising results and could provide opportunities to improve affected habitats in the future. Conclusion and implications: This review highlights the extensive amount of knowledge that exists for Gamay, but also identifies key gaps that need to be filled for effective management

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (tt¯) charge asymmetry Att¯C and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive tt¯ charge asymmetry is measured to be Att¯C = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the tt¯ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients
    corecore