10 research outputs found

    Selective accumulation of differentiated FOXP3+ CD4+ T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood

    Get PDF
    Precise identification of regulatory T cells is crucial in the understanding of their role in human cancers. Here, we analyzed the frequency and phenotype of regulatory T cells (Tregs), in both healthy donors and melanoma patients, based on the expression of the transcription factor FOXP3, which, to date, is the most reliable marker for Tregs, at least in mice. We observed that FOXP3 expression is not confined to human CD25+/high CD4+ T cells, and that these cells are not homogenously FOXP3+. The circulating relative levels of FOXP3+ CD4+ T cells may fluctuate close to 2-fold over a short period of observation and are significantly higher in women than in men. Further, we showed that FOXP3+ CD4+ T cells are over-represented in peripheral blood of melanoma patients, as compared to healthy donors, and that they are even more enriched in tumor-infiltrated lymph nodes and at tumor sites, but not in normal lymph nodes. Interestingly, in melanoma patients, a significantly higher proportion of functional, antigen-experienced FOXP3+ CD4+ T was observed at tumor sites, compared to peripheral blood. Together, our data suggest that local accumulation and differentiation of Tregs is, at least in part, tumor-driven, and illustrate a reliable combination of markers for their monitoring in various clinical setting

    Automated segmentation and labeling of subcutaneous mouse implants at 14.1T

    Get PDF
    Magnetic resonance imaging (MRI) is a valuable tool for studying subcutaneous implants in rodents, providing non-invasive insight into biomaterial conformability and longitudinal characterization. However, considerable variability in existing image analysis techniques, manual segmentation and labeling, as well as the lack of reference atlases as opposed to brain imaging, all render the manual implant segmentation task tedious and extremely time-consuming. To this end, the development of automated and robust segmentation pipelines is a necessary addition to the tools available in rodent imaging research. In this work, we presented and compared commonly used image processing contrast-based segmentation approaches—namely, Canny edge detection, Otsu’s single and multi-threshold methods, and a combination of the latter with morphological operators—with more recently introduced convolutional neural network (CNN-) based models, such as the U-Net and nnU-Net (“no-new-net”). These fully automated end-to-end state-of-the-art neural architectures have shown great promise in online segmentation challenges. We adapted them to the implant segmentation task in mice MRI, with both 2D and 3D implementations. Our results demonstrated the superiority of the 3D nnU-Net model, which is able to robustly segment the implants with an average Dice accuracy of 0.915, and an acceptable absolute volume prediction error of 5.74%. Additionally, we provide researchers in the field with an automated segmentation pipeline in Python, leveraging these CNN-based implementations, and allowing to drastically reduce the manual labeling time from approximately 90 min to less than 5 min (292.959 s ± 6.49 s, N = 30 predictions). The latter addresses the bottleneck of constrained animal experimental time in pre-clinical rodent research

    The effect of vaccines based on ovalbumin coupled to gas-filled microbubbles for reducing infection by ovalbumin-expressing Listeria monocytogenes.

    No full text
    Gas-filled microbubbles (MB) are a very promising alternative to the currently evaluated lipid- or polymer-based particulate Ag delivery systems. We recently demonstrated the ability of MB to deliver associated Ag to DC, to activate them and thereby induce both humoral and cellular immune responses. We now extended the characterization of MB as antigen-delivery system by appraising the efficiency of MB-associated ovalbumin (OVA-MB) at protecting mice against pathogen infection. Ultrasound-mediated imaging demonstrated that the administration of OVA via MB generates a depot at the injection site that lasts for several hours. We found that OVA-MB injected subcutaneously is far more effective at inducing specific Ab and T cell immunity than immunization with free OVA. Moreover, a covalent link between MB and OVA causes a stronger bias towards a Th1-type of immune response than adsorption of the Ag or its covalent link to liposomes of the same lipid composition. Finally, vaccination of mice with OVA-MB partially protects against a systemic infection with OVA-expressing Listeria monocytogenes. The vaccine induces specific effector CD8 T cell responses capable of decreasing more than 100 fold the bacterial load. MB thus represent a potent Ag delivery system for vaccination against intracellular infectious agents

    Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance

    No full text
    Although tumor-specific CD8 T-cell responses often develop in cancer patients, they rarely result in tumor eradication. We aimed at studying directly the functional efficacy of tumor-specific CD8 T cells at the site of immune attack. Tumor lesions in lymphoid and nonlymphoid tissues (metastatic lymph nodes and soft tissue/visceral metastases, respectively) were collected from stage III/IV melanoma patients and investigated for the presence and function of CD8 T cells specific for the tumor differentiation antigen Melan-A/MART-1. Comparative analysis was conducted with peripheral blood T cells. We provide evidence that in vivo-priming selects, within the available naive Melan-A/MART-1-specific CD8 T-cell repertoire, cells with high T-cell receptor avidity that can efficiently kill melanoma cells in vitro. In vivo, primed Melan-A/MART-1-specific CD8 T cells accumulate at high frequency in both lymphoid and nonlymphoid tumor lesions. Unexpectedly, however, whereas primed Melan-A/MART-1-specific CD8 T cells that circulate in the blood display robust inflammatory and cytotoxic functions, those that reside in tumor lesions (particularly in metastatic lymph nodes) are functionally tolerant. We show that both the lymph node and the tumor environments blunt T-cell effector functions and offer a rationale for the failure of tumor-specific responses to effectively counter tumor progression
    corecore