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Magnetic resonance imaging (MRI) is a valuable tool for studying subcutaneous
implants in rodents, providing non-invasive insight into biomaterial conformability
and longitudinal characterization. However, considerable variability in existing
image analysis techniques, manual segmentation and labeling, as well as the lack
of reference atlases as opposed to brain imaging, all render the manual implant
segmentation task tedious and extremely time-consuming. To this end, the
development of automated and robust segmentation pipelines is a necessary
addition to the tools available in rodent imaging research. In this work, we
presented and compared commonly used image processing contrast-based
segmentation approaches—namely, Canny edge detection, Otsu’s single and
multi-threshold methods, and a combination of the latter with morphological
operators—with more recently introduced convolutional neural network (CNN-)
based models, such as the U-Net and nnU-Net (“no-new-net”). These fully
automated end-to-end state-of-the-art neural architectures have shown great
promise in online segmentation challenges. We adapted them to the implant
segmentation task in mice MRI, with both 2D and 3D implementations. Our results
demonstrated the superiority of the 3D nnU-Net model, which is able to robustly
segment the implants with an average Dice accuracy of 0.915, and an acceptable
absolute volume prediction error of 5.74%. Additionally, we provide researchers in
the field with an automated segmentation pipeline in Python, leveraging these
CNN-based implementations, and allowing to drastically reduce the manual
labeling time from approximately 90 min to less than 5 min (292.959 s ± 6.49 s,
N = 30 predictions). The latter addresses the bottleneck of constrained animal
experimental time in pre-clinical rodent research.
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1 Introduction

Small animals such as mice are often used in the pre-clinical setting to advance the
understanding of implantation techniques and bio-compatibility properties of injected
biomaterials, with the ultimate goal of translating these research outcomes into human
clinical applications. To this aim, magnetic resonance imaging (MRI) has been widely used as
a non-invasive imaging modality, with the availability of excellent imaging contrasts for soft
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tissues, enabling a wide range of applications, notably in drug
development (Matthews et al., 2013). However, tissue
segmentation in the pre-clinical setting in mice has so far mainly
been carried out in the brain (Mulder et al., 2017; Gordon et al.,
2018; De Feo et al., 2021). Often, the latter relies on the usage of a
high-resolution brain atlas [e.g., Waxholm space atlas (Papp et al.,
2014), or more recently, the SIGMA rat brain atlases (Barrière et al.,
2019); see Johnson et al. (2021) for a comprehensive list of rat brain
atlases], to which the acquired images are registered using a library
of analysis tools such as FSL (Smith et al., 2004; Jenkinson et al.,
2012). Often, the main objective in these studies is to obtain an
accurate segmentation of different rat brain anatomical structures,
so that anatomical properties such as volumes of different brain
regions can then be assessed and compared between animal
populations. Atlases differ between in vivo and ex vivo studies,
with widely varying tissue contrast and spatial resolution (Johnson
et al., 2021). For these reasons, it is often challenging to create robust
automated segmentation pipelines for different brain tissues. To
tackle these limitations, multi-atlas strategies to improve
segmentation accuracy have been proposed (Bai et al., 2012; Ma
et al., 2014), as well as the use of other imaging sequences such as
diffusion-weighted imaging (DWI), which was shown to be useful in
better defining anatomic boundaries in several rat brain atlases
(Calabrese et al., 2014; Papp et al., 2014).

However, deep neural networks (DNNs), and in particular, the
subset of convolutional neural networks (CNNs), have
demonstrated superior segmentation outcomes compared to
classical registration algorithms or multi-atlas methods (De Feo
et al., 2021). CNNs can be trained to significantly outperform state-
of-the-art registration-based methods, both in terms of higher
segmentation accuracy and lower inference time. In small animal
MRI studies, however, the use of CNNs was limited to skull-
stripping (Roy et al., 2018) and brain tissue segmentation (De
Feo et al., 2021) approaches. Therefore, when biomaterials are
injected into different body parts of the animal, the resulting
shapes of the injected volume need to be estimated, and no
corresponding atlas can be found or created. Similarly to the
brain, tissues around the injection site need to be robustly
delineated. For instance, in Hillel et al. (2012), authors have used
MRI for volumetric analysis of 4 different injected soft tissue fillers
in 5 rats, but have not required extensive tissue segmentation
techniques due to the small sizes of fillers and the use of porcine
collagen for injections, which possesses good intensity
differentiation properties from adjacent tissues. In Fischer et al.
(2015), 24 rats were injected with silicone implants, but only a small
subset (2 rats from each study group) underwent MRI volumetric
implant characterization, and measurements were approximated as
elliptic shapes, and performed by two blinded observers. However,
segmentation by hand is often tedious, extremely time consuming,
and prone to variability if different researchers annotate the data. Liu
et al. (2016) studied different hydrogels’ morphologies injected in
rats, but used a commercially available software suite (MIMICS
16.0) designed for human medical image analysis and segmentation
to perform the 3D reconstructions of rat implants. While the latter
may provide a satisfying workaround for certain applications, it is
not readily available to a wider range of researchers working with
rodents. Quintero Sierra et al. (2022) further analyzed properties of
3 different subcutaneously injected acellular membranes in 30 rats,

and had to perform tedious pixel-by-pixel manual volume
segmentation in all animals. More recently, Tawagi et al. (2023)
studied different hydrogel discs injected dorsally in 8 rats, using in-
house threshold-based MATLAB scripts for implant segmentation.
Authors reported the poor contrast between unlabeled implants and
surrounding tissue, and again had to resort to manual segmentation
across all slices.

In this context, novel automated and robust segmentation
pipelines are required to extract the volumes of the injected
implants in a reasonable amount of time. Here, we investigate
several implant segmentation methods based on algorithms
derived from classical image processing approaches, such as edge
detection (Canny), Otsu’s methods, and the combination of such
threshold-based approaches with morphological operators. We then
propose an adapted CNN-based U-Net model suitable for injected
implants in small animals, and compare the performance of all
methods for accurate volume prediction.

2 Materials and methods

2.1 Mice implantation

Implantation experiments were approved by the local Animal
Care and Use Committee of the Canton of Vaud (Switzerland,
authorization VD3063.1). Adult, female CD1 mice between 12 and
20 weeks old were purchased from Charles River Laboratories (Bar
Harbor, Maine, United States) and hosted at the university facilities
(CIBM, EPFL, Lausanne, Switzerland) with a 12 h light/dark cycle, a
normal diet ad libitum, in a room with a controlled temperature of
22°C ± 2°C. All animals were left to acclimatize in the facility for at
least 1 week before implantation. The back of anesthetized mice (4%
and 2% isoflurane for induction and maintenance, respectively) was
shaved and disinfected with Betadine (Mundipharma Medical
Company, Germany). The biomaterial (Béduer et al., 2021) was
injected into the subcutaneous space of the left lower back of the
mice (400 μL per mouse) through a 20G catheter (Terumo Corp.,
Japan). The implantation outcome is illustrated in Figure 1.

2.2 MRI acquisition

All MRI experiments were performed on a 14.1 Tesla MRI
system (Magnex Scientific, Oxford, United Kingdom) interfaced to a
Bruker console (Paravision PV 360 v1.1, Ettlingen, Germany)
located at the CIBM Centre for Biomedical Imaging (CIBM,
Lausanne, Switzerland) and equipped with 1,000 mT/m gradients
using an in-house-built 14 mm diameter single loop surface 1H
transceiver placed on top of the injection site. During all MRI
recordings, mice were placed in an in-house-built cradle,
anesthetized with 1.5%–2% isoflurane in a 1:1 mixture of O2 and
air (Figure 1). Body temperature and respiration rate were
monitored using a small animal monitor system (SA
Instruments, New York, United States). In addition, body
temperature was maintained at 37°C using warm circulating
water and was measured with a rectal temperature sensor. T2-
weighted images were acquired on the lower back of 15 mice in
which the biomaterial was injected using a TurboRARE sequence
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(RARE factor 2, TR = 2,000 ms, TE = 14 ms and 21 ms, field of
view = 25 × 15 mm2, 46 slices with 0.5 mm slice thickness, and 192 ×
96 matrix size, with a resolution of 0.7 × 0.13 × 0.16 mm3) combined
with a respiratory trigger. A total of 144 slices per image were then
available for manual annotation.

2.3 Manual segmentation

After acquisition, anatomical MR images were segmented by
hand using the ITK-SNAP software version 3.6.0 (Yushkevich et al.,
2006). Slice-by-slice annotations were performed manually by

defining the area of biomaterial implant using the polygon tool
on top of each implant slice. 3D volumes were then reconstructed
and quantified for each acquisition (Figure 2). These manually
measured volumes were thereafter used as ground truth data for
automated segmentation algorithms, in the form of binary masks
with voxels encoded as 1 for implant and as 0 for background.

2.4 CNN-based segmentation

Deep learning approaches are known for their excellent
performance in segmentation tasks, in particular with U-Net

FIGURE 1
Illustration of the automated segmentation pipeline. The animal, with the implant injected in the lower back, is positioned in an in-house-built cradle
and scanned. 144 T2-weighted slices are then available for segmentation. Time-consuming manual segmentation serves as reference (ground truth
mask). Threshold models and CNNs are then evaluated and compared for the automated segmentation procedure.

FIGURE 2
Reconstruction of manually labeled implants (manual segmentation) for 3 different mice (97-779G, 94-793G, and 92-778G). These examples
illustrate the complexity, non-uniformity, and 3D variability of the implanted biomaterial.
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architectures. U-Net is an image segmentation technique developed
primarily for medical image analysis that can precisely segment
images using a small amount of training data (Ronneberger et al.,
2015). The U-Net architecture consists of a contracting path
(encoder) and of an expanding path (decoder). The encoder
extracts features at different levels through a sequence of
convolutions, rectified linear unit (ReLU) activations, and max
poolings, to capture the contents of each pixel. The number of
feature channels is doubled at every down-sampling step, and the
dimensions are reduced. The encoder learns to transform the input
image into its features representation. The decoder is a symmetric
expanding path that up-samples the result to increase the resolution
of the detected features. The expanding path consists of a sequence
of up-convolutions and concatenations with the corresponding
feature map from the contracting path, followed by ReLU
activations. The resulting network is almost symmetrical, with a
U-like shape. Furthermore, in the U-Net architecture, skip-

connections are added to skip features from the contracting path
to the expanding path to recover spatial information lost during
down-sampling. The presence of these additional paths has been
shown to benefit model convergence (Drozdzal et al., 2016). To
obtain the prediction on an input image, the model’s output is
passed through a sigmoid activation function, which attributes to
each pixel a probability reflecting its classification as implant or
background. A threshold at p = 0.5 is then applied to round the pixel
as either 1 or 0.

The architecture of the U-Net can be modified to become a 3D
U-Net capable of segmenting 3-dimensional images. The core
structure with contracting and expanding paths is kept, however,
all 2D operators are replaced with corresponding 3D operators (3D
convolutions, 3D max pooling, and 3D up-convolutions). Here, we
implemented several U-Net models and compared classification
performance metrics with respect to other non CNN-based
models on the mice implant segmentation task. Namely, we

FIGURE 3
Block digrams for the compared threshold-based [Otsu one- and multi-threshold, Canny edge detector, and the combination of multi-threshold
Otsu with morphological operators (MTOMO)] methods and for the best performing CNN-based 3D nnU-Net on the implant segmentation task, with
illustrated 2D and 3D output examples, respectively.
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trained a 2D U-Net model (Section 2.4.1), and 2D and 3D
adaptations of a self-configuring model called nnU-Net
(Section 2.4.2).

2.4.1 2D U-Net
The original U-Net architecture (designed for inputs of size

572 × 572 × 3 channels) was adapted in order to fit the
segmentation task. Each MR input image was sliced according
to its first dimension, yielding 46 slices of 192 × 96 × 3 channels.
The output was modified to yield a single channel, in accordance to
the pixel-wise binary classification problem. Padding was matched
for same vector size to avoid shrinkage during convolutions, and
batch normalization was added after each ReLu activation to
accelerate the training. A total of 15 million trainable
parameters was kept. The weights of the model were initialized
randomly, and the batch size was set to 5 slices. Each slice was
normalized, and both the mean and standard deviation were fixed.
The BCEWithLogitsLoss loss function from PyTorch was
selected to better deal with the unbalanced data set (97.1% of
pixels were labeled as background across all available slices). The
loss was therefore defined as

L x, y( ) � − 1
N |I| ∑

N

n�1

× ∑
i∈I

pc yn,i log σ xn,i( ) + 1 − yn,i( ) log 1 − σ xn,i( )( )[ ]
(1)

withN the number of slices in a given batch, |I| the number of pixels,
yn,i the true binary value (0 or 1) of pixel i in image n, and xn,i the
prediction for pixel i in image n. The weight of the positive answer pc
(for class c) was set to 10, after testing weights in the range (0, 20). As
rare classes could end up being ignored because of under-
representation during training, the weight of the positive answer
was used to limit false negatives (i.e., predicting background instead
of implant for a given pixel i in image n). The loss combines a
sigmoid layer and the binary cross entropy loss (BCELoss) in one
single class, and is more stable numerically (log-sum-exp trick). The
stochastic gradient descent was replaced with the Adam optimizer
(Kingma and Ba, 2017), known to converge faster during training.
The learning rate was initially set to 0.1 and was multiplied by
0.8 every 50 epochs. These values were tuned through a grid search,
maximizing the Dice coefficient on the validation set (see Section
3.2). The training was done for 250 epochs, and the model
parameters were saved every 25 epochs. The evolution of the
Dice coefficient on the train set stabilized after 100 epochs, and
decreased on the validation set after 100 epochs. To avoid over-
fitting, the model used for testing was trained with 100 epochs.

2.4.2 2D nnU-Net and 3D nnU-Net
nnU-Net is a robust and self-adapting framework based on 2D

and 3D vanilla U-Nets (Isensee et al., 2021). It is a deep learning-
based segmentation method that automatically configures itself.
Three types of parameters are to be determined: fixed, rule-
based, and empirical. Fixed parameters such as architecture
design decisions or the training scheme are predetermined. Rule-
based parameters are configured according to the data fingerprint
(low dimensional representation of the data set properties),

including dynamic network adaptation (input dimension), target
spacing, and re-sampling of intensity normalization. Empirical
parameters were determined by monitoring the performance on
the validation set after training. The architecture is similar to the
U-Net. It contains plain convolutions, instance normalization, and
leaky ReLu for the activation functions. Two computational blocks
per resolution stage were used in both encoder and decoder
(Figure 3). Down-sampling was done with stride convolutions
(stride > 1), and up-sampling with transposed convolutions.
While the framework offers 3 separate configurations (2D U-Net,
3D full resolution U-Net, and 3D U-Net cascade), the cascade
configuration was not used because it is only beneficial when the
input data is larger than the 3D full resolution U-Net’s patch size,
which was not the case here. The optimizer was a stochastic gradient
descent with a high initial learning rate (0.01) and a considerable
Nesterov momentum (0.99). The learning rate was reduced during
the training using the “polyLR” schedule, which follows an almost
linear decrease to 0. The loss terms were averaged and consisted of
the Dice loss and a cross-entropy loss. The latter is well suited to
address the class imbalance problem and provides stability during
training. Several data augmentation techniques were applied during
the training, namely, rotation and scaling, addition of Gaussian
noise, Gaussian blur, change in brightness and contrast, and gamma
augmentation and mirroring. The models were trained in a 5-fold
cross-validation loop with a fixed length of 1,000 epochs for each
configuration (five customized training and validation sets were
created). During the training, the framework kept in memory the
weights yielding the best Dice accuracy on the validation set. At
inference, the framework aggregated the result of the 5-fold models.

2.5 Comparison with threshold models

Several other automated segmentation algorithms previously
implemented in the laboratory and used for this data set were
explored to compare classification performance with the deep
learning-based automated segmentation implementations (2D
U-Net, 2D and 3D nnU-Nets). These models, hereafter referred
to as threshold models, included one- and multi-threshold Otsu
methods, a Canny edge detection approach, and a combination of a
multi-threshold Otsu method with additional morphological
operations (MTOMO; Figure 3). These techniques were
previously used in combination with manual segmentation, and
made use of several contrast properties of the injected biomaterial
(e.g., the average implant pixel was 82.5% brighter than its
background surrounding tissue, and a convex and compact shape
described most slices containing the implants).

The first thresholding algorithm is called Otsu (Otsu, 1979). It
separates the pixels of an input image into several different classes
according to the intensity of gray levels. For MR images, the
brightest group was labeled as the implant and the other groups
as the background. The Otsu single-threshold method was tested
beforehand, but better results were observed when using multiple
thresholds. To emphasize the differences in the images, a gamma
correction technique was additionally applied. It is used to improve
the brightness of the image and enhances the image contrast.
Gamma correction is defined by the following power-law expression
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Vout � AVγ
in (2)

with Vin the input pixel value of the image, A a constant that was set
to 1 and γ a parameter to fine-tune. Darker regions can be made
lighter by using a γ smaller than 1. Several γ values were tested, and
0.4 was retained. Changing the intensity’s distribution allowed to
enhance and highlight the image information.

To take into account the desired morphological shape, an
edge detection algorithm was implemented. Edge detection is the

detection of objects’ boundaries within an image, by means of
intensities’ discontinuities analysis. This technique was used
because the implant appears brighter than its surrounding
tissue under to used MR contrast. The Canny edge detection
method (Canny, 1986) was used, as it is known to provide the best
results with strong edges compared to the other edge detection
methods (Othman et al., 2009; Katiyar and Arun, 2014). The
Canny edge detector is a multi-stage algorithm that uses the first
derivative of a Gaussian to detect an edge in an image. It consists
of five separate steps: noise reduction (smoothing), gradient
seeking, non-maximum suppression, double threshold, and
edge tracking by hysteresis. Finally, morphological operators
were used to achieve better results, such as filling holes
(binary closing) and reducing the shape of the detected
implant (binary erosion). The different methods are illustrated
in Figure 3 and are detailed in the Jupyter notebook semi-

automatic-methods.ipynb (see Data Availability
Statement).

2.6 Validation

The Dice similarity coefficient was used to quantify the accuracy
of prediction for each model. The latter measures the similarity
between two sets of data, and ranges from 0, indicating no spatial

FIGURE 4
Illustration of threshold methods [Otsu one- and multi-threshold, Canny edge detector, and the combination of multi-threshold Otsu with
morphological operators (MTOMO)] applied to a clean MRI slice (25 out of 46) of mouse 94-795G. The ground truth (last column) corresponds to the
manual human segmentation. It is overlaid in a red shade onto the original MRI slice (left). All of the thresholdmodels overestimated the implant volume at
this location, with MTOMO yielding the best performance.

TABLE 1 Average Dice coefficients over the indicated slice ranges for the four
compared models (multi-threshold Otsu with morphological operators
(MTOMO), 2D U-Net, and 2D and 3D nnU-Nets), computed on a total of 1036 2D
images in the test set. Confidence intervals at 95% are shown.

Model Extremities Center Overall

MTOMO 0.643 ± 0.035 0.706 ± 0.017 0.707 ± 0.019

2D U-Net 0.737 ± 0.033 0.907 ± 0.006 0.782 ± 0.020

2D nnU-Net 0.858 ± 0.025 0.930 ± 0.008 0.905 ± 0.012

3D nnU-Net 0.872 ± 0.022 0.936 ± 0.006 0.915 ± 0.011

Slice range 11–17 and 29–34 18–28 9–36

# of 2D images 481 407 1036

The bold values represents the best result for the respective metric when comparing between

the listed algorithms in the Tables.
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overlap between the two sets of binary segmentation results, to 1,
indicating a complete overlap. It is defined as

Dice A, B( ) � 2 ×|A ∩ B|
|A| + |B| (3)

with A being the set of predicted implant pixels and B the set of
actual (ground truth) implant pixels. Additionally, every model
presented in this manuscript was trained and tested on the same
data split. 114 MRIs were split into a training, validation, and testing
sets, in the respective proportions of 53%, 14%, and 33%. The test set
contained 38 MR images (1036 2D images). The data was carefully
split to avoid bias, such that any repeated measures from the same
animal (if any) were present in only one of these three sets.

To complement Dice similarity, and as primary goal of this
automated implant segmentation pipeline, implant volume
estimates were computed for each prediction. A relative volume
difference was computed as

ΔVolrel � Volpred − Vollab
Vollab

( ) × 100 (4)

with ΔVolrel in %, Volpred the predicted volume from the output
binary mask from each model, and Vollab the computed volume

from manually labeled segmentation (i.e., ground truth). Validation
metrics were then assessed on average segmentation outcomes
(implant mask outputs) and per slice.

3 Results

3.1 Threshold models

The threshold and edge detection algorithms, as previously
described in Section 2.5, were applied on the test set. These
algorithms mostly delineated the implant shape at central sagittal
locations (e.g., slice 25 out of 46 in Figure 4) but did not perform well
at implant edge slices (e.g., slices 13–17 or 31–35). Multi-threshold
Otsu performed better than its single-threshold alternative, as
expected, but included many noisy pixels from the background.
Canny edge detection was not sufficient for this task, and tissue
features from the spine of rodents were also captured (Figure 4). The
best threshold model was obtained by applying additional
morphological operators, namely, binary closing and binary
erosion (see Section 2.5), to the multi-threshold Otsu model
(i.e., MTOMO), but overestimation of the implant volume had
still occurred because of poor implant/tissue contrast.

Because of the relatively poor performance of threshold-based
models on this segmentation task, especially at implant edges, only
the best performing model (MTOMO) was further selected for
comparison with U-Net models.

3.2 Dice coefficients

For every model, average Dice coefficients were computed (as
described in Section 2.6) across the test set. Results are summarized in
Table 1, as averages with 95% confidence interval. As all implants are
located within the slice range 10–35, the averageDice coefficients were
computed per slice within the range 9–36 to exclude a significant
amount of 2D images with background only. The 2D and 3D nnU-
Nets were trained on the entire range of slices, but the 2D U-Net and
the MTOMO model were trained on the subset of slices containing a
part of an implant. However, comparisons were made separately to
account for the number of slices. For comparison, the implants were
further distinguished between their extremities (slices 11–17 and
29–34) and their average central part (slices 18–28). On average,
the 3D nnU-Net model outperformed the other models with a Dice
coefficient of 0.915 ± 0.011 (95% CI).

TABLE 2 Relative volume differences (ΔVolrel, see Eq. 4), expressed as average (± standard deviation) and absolute average (|Average|), maximum prediction error
(Errormax), and training and prediction times, for the four compared models (multi-threshold Otsu with morphological operators (MTOMO), 2D U-Net, and 2D and
3D nnU-Nets) on the test set.

Model Average ± std (%) |Average| (%) Errormax (%) Training time (h) Prediction time (s)

MTOMO −30.14 ± 0.252 40.5 74.04 0 30

2D U-Net 3.14 ± 0.012 14.15 44.48 5 16

2D nnU-Net −7.65 ± 0.014 8.90 27.69 29 146

3D nnU-Net −3.85 ± 0.005 5.74 17.79 100 320

The bold values represents the best result for the respective metric when comparing between the listed algorithms in the Tables.

FIGURE 5
Comparison of the average Dice coefficient across implant-
containing slices (9–36) for 4 different models (multi-threshold Otsu
with morphological operators (MTOMO), simple 2D U-Net, and 2D
and 3D nnU-Nets). On average, the 3D nnU-Net outperforms the
other models in almost all slices. In particular, the 2D U-Net fails to
properly capture the implant at edge locations (e.g., slices 32–36).
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3.3 Volume estimates

The predicted volume was computed by counting the voxels
classified as part of the implant within the output binary mask from
each model, multiplied by the volume of a single voxel
(i.e., 0.0146 mm3). Average (± standard deviation) differences
were computed for each model across all predictions over the
test set (Table 2). A negative average corresponds to volume
underestimation, while a positive value reflects an average
overestimation. The absolute average (|Average| in Table 2) was
also computed to estimate the average absolute volume deviation
from themanually labeled masks for eachmodel. The latter accounts
for volume under- and over-estimation across different predictions
from the same model. The maximum error (Errormax in Table 2)
represents the highest volume deviation obtained across all
predictions for a given model. Additionally, the total training
time (in hours) and prediction time (in seconds; for a given
model to output a single binary 46 × 192 × 96 predicted implant
mask) were estimated for each model.

While the best threshold model (MTOMO) highly
underestimates the implant volume, only the 2D U-Net
overestimates it. Both the 2D and 3D nnU-Nets underestimate
the implant volume, but only by an absolute average error of
8.90% and 5.74%, respectively. The 3D nnU-Net therefore highly
outperforms its 2D alternative, with a maximum error below 20%
(17.79% in this test set). Even if the volume prediction errors are also
reflected in the Dice coefficients (Table 1), a noticeable improvement
can be seen for the 3D against the 2D nnU-Net. Indeed, while the
different in Dice coefficients is low (0.915 against 0.905 on average,
for all implant slices, Table 1), the 3D nnU-Net was substantially
better at predicting a more accurate overall implant volume.
Training times reflect models’ complexity, even if some were
trained on GPUs rather than CPUs.

3.4 Comparison per slice

3.4.1 Dice coefficients per slice
The average Dice coefficient profile per slice for each model is

shown in Figure 5. The resulting inverted U-shape across the four
models illustrates the increased difficulty at correctly delineating
the implant from the surrounding tissue at implant edge slices
(e.g., see also Figures 8C, D), when poor contrast or non-convex
shapes come into play. Hence, all four models exhibit increased
prediction accuracy within the central slices 18–28, with 3D and
2D nnU-Nets performing the best. The performance drops
associated with implant edges are due to numerous
background pixels within extremity slices, as well as more
atypical shapes previously unseen by the models. The 3D
nnU-Net outperforms its 2D alternative by relying on
previous slices at implant extremities, whereas each slice is
processed independently in the 2D nnU-Net. This is further
illustrated in Figure 6, in which the reconstructed predictions
from both nnU-Net models show the added benefit of using the
3D version.

3.4.2 Volume error per slice
Aside similar average Dice coefficients (Table 1), the 3D nnU-

Net yielded better average volume predictions than its 2D

FIGURE 6
Comparison of reconstructions between themanual segmentation (ground truth), and the predictions of 2D and 3D nnU-Netmodels applied on the
implant fromone rodent (97-815G). Dice coefficients were 0.916 (2D) and 0.944 (3D), and predicted volume errors of 11.1% and 0.7%, respectively. The 3D
nnU-Net model overcomes its 2D alternative by better capturing the implant structure at specific edge locations (circled).

FIGURE 7
Average and absolute average errors in number of pixels for the
2D and 3D nnU-Net models. Average Dice coefficients are
superimposed at the relevant slice locations. The 3D nnU-Net model
performs better at several poor-contrast implant locations (e.g.,
slices 13–17, and 29–33), and shows a reduced average error over all
slices. All implants were fully contained between slices 9–36.
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FIGURE 8
Examples of segmentation outcomes by different algorithms for selected slices. The ground truth column corresponds to manual segmentation,
and itsmask is overlaid (red shading) onto theMR image. (A)When the slice contains an easily identifiable implant shape, only theMTOMOmodel captures
erroneous elongations due to similar tissue characteristics at the lower end of the implant. (B) For more complex implant shapes, the 3D nnU-Net is able
to performmuch better than the 2D alternatives, by capturing disjoint parts. (C) A similar effect can be seen for slices with poor implant versus tissue
contrast. (D) At slices near the edge, the 3D nnU-Net correctly captures background tissue when no implant is present. These examples illustrate the
robustness of the 3D nnU-Net model on this segmentation task.
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alternative. This was also valid for the volume estimated per slice.
Figure 7 shows the average and absolute average errors in number of
pixels per slice for the two nnU-Net models. Dice coefficients per
slice are also included.

On average, both models predicted a smaller number of pixels at
every slice compared to the ground truth (negative dashed lines in
Figure 7), which shows that volume under-estimation occurred at
every slice. The absolute average curve shows once again that the 3D
nnU-Net model performed better at central implant locations (slices
18–28) as compared to extremities (slices 11–17 and 29–34), at
which the benefit of using the 3-dimensional model is less
pronounced.

3.4.3 Segmentation outcomes
Models were further visually compared across different slices

and rodents. Figure 8 illustrates 4 different segmentation outcomes
across the 4 models. In (A), a central implant slice is shown, for
which the 3D nnU-Net model achieved almost perfect segmentation
(Dice coefficient of 0.988). This illustrates the benefit of automated
segmentation at central implant locations. In (B), a more complex
implant shape is shown. In this case, the 2D nnU-Net is unable to
capture the smaller part of the implant because of its discontinuity.
The 3D nnU-Net successfully captures the smaller part despite the
introduced implant discontinuity. In (C), the 3D nnU-Net again
outperforms the other models in a poor implant-tissue contrast slice.
Finally, (D) illustrates the benefit of the 3D-trained model regarding
the minimization of background pixels labeling as implant.

4 Discussion

Our results demonstrate that CNN-based segmentation based on
“no-new-nets” (nnU-Nets) can drastically improve classical threshold-
based segmentation methods previously available for MR images, when
no corresponding prior atlases (i.e., as for brain segmentation) are
available. These results are in line with previous MRI-based
segmentation literature in rodents (Holbrook et al., 2020; De Feo
et al., 2021; Gao et al., 2021). However, to the best of our knowledge,
this is the first contribution of a fully automated Python pipeline for non-
brain implant segmentation in mice. Although the superiority of CNN-
based segmentation models over more classical image processing
approaches has already been shown in several medical imaging
applications (Kayalibay et al., 2017), we here leveraged and compared
CNN-based models, in particular the classical 2D U-Net (Ronneberger
et al., 2015), as well as the more recently proposed nnU-Nets (Isensee
et al., 2018; Isensee et al., 2021) in 2D and 3D, with so-far available
threshold-based procedures. We have shown that the best performing
threshold-based model, the multi-threshold Otsu combined with
morphological operators (MTOMO), as well as the classical 2D U-Net
architecture, were not robust enough to retain an acceptable segmentation
accuracy, especially at implant edges. The nnU-Net architecture, especially
in 3D, was more suitable to capture subtle implant characteristics in poor
implant-tissue contrast conditions, as shown by the much higher average
Dice coefficients obtained both at implant extremities and center.
Moreover, the benefits of the 3D over the 2D implementation of the
nnU-Net were substantial for the improved accuracy at implant edges, as
well as for the minimization of background pixels’ classification as
implant, as shown in several segmentation example outcomes. This

improvement in accuracy can be attributed to the more sophisticated
nnU-Net algorithm with a large number of trainable parameters, as
compared to the classical image processing algorithms (Canny and Otsu)
previously employed by researchers in the field.

Several limitations of the currentmodels could be further addressed
to improve these results. The recurrent average volume under-
estimation by the 3D nnU-Net model, at the average and per slice
levels, was certainly due to the class imbalance in the ground truth. This
imbalance was addressed in the 2D U-net model by choosing an
appropriate weight of the positive answer (for the under-represented
implant class), yielding volume over-estimation, at the expense of
decreased accuracy in volume prediction. Another limitation is that
the implant shapes were relatively similar across mice, since the same
amount of biomaterial was always injected, and because of the anatomy
of the back of themouse. Therefore, themodel could be trained onmore
heterogeneous data, by estimating implants of lower or bigger size.
However, published and available rodents’ implant data is scarce, which
does not allow to further evaluate our pipeline on additional data sets.
Here, the utilized data augmentation approaches for the nnU-Net
models were not sufficiently modifying the shapes of the implants,
making it more difficult for these models to deal with atypical andmore
complex shapes. Further research could include the implementation of
different loss functions (Jadon, 2020; Ma et al., 2021), as the twometrics
used here (Dice and volume estimates) only allow for a modest
characterization of models’ performance. Moreover, interpretability
of the trained model architecture could be further explored, as
companion characterization tools begin to emerge (Alber et al.,
2019). A bigger data sample, as well as improved MRI contrasts at
14.1 Tesla could further enhance these results. However, the primary
goal of this manuscript was to present a novel segmentation pipeline for
implants in rodents at high-field MRI, and to make it freely available to
researchers in order to significantly decrease the time needed for
manual segmentation and labeling, as well as to avoid costly
software suites. Labeling by hand 46 slices (of 192 × 96 pixels) takes
on average 90 min for an expert. In comparison, the 3D nnU-Net
implementation proposed here achieves this task in 292.95 ± 6.49 s (N=
30 predictions), with an average accuracy (Dice coefficient) of 0.915 and
an average absolute error of 5.74% on the predicted volume. In
conclusion, the proposed automated segmentation pipeline may
significantly ease the work of researchers working with rodents and
MRI, still allowing for manual fine-tuning of small errors after
automated CNN-based segmentation.
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