283 research outputs found

    More Frequent, Intense, and Extensive Rainfall Events in a Strongly Warming Arctic

    Get PDF
    The changes in the Arctic precipitation profoundly impact the surface mass balance of ice sheet and sea ice, the extent of snow cover, as well as the land/ice surface runoff in the Arctic, particularly when it occurs in liquid form. Here, we use state-of-the-art models from the Coupled Model Intercomparison Project Phase 5 to project the number of days with rainfall, the intensities and onset dates of rainfall events in the Arctic under the strong emission scenario (RCP8.5). The multi-model mean shows that rainfall will occur more frequently in the Arctic at the end of this century (2091-2100), with larger increase in the rainy days over the Pacific and Atlantic sectors (up to 12 days/month) during the cold seasons (October-May) and over the Arctic Ocean (up to 14 days/month) during the warm seasons (June-September) as compared with the present day (2006-2015). Greater uncertainty is found in the cold seasons, which mainly comes from the high variability among different models in the Norwegian Sea. Sixty-seven to ninety-three percentage of the increases in rainy days is contributed by the local warming and the remainder by the increase in total precipitation. Moreover, at the end of this century, the rainfall in spring will occur much earlier than the present day by more than 1 month, and the extent of rainfall will further expand toward the center of the Arctic Ocean and the inland Greenland in the future. The changes of rainfall intensity on the Arctic land area to the climate warming are more sensitive than that on the Arctic Ocean in warm seasons (May-September). The rainfall will be further strengthened in most of the Arctic continents in summer, with the largest increase in the intensity of similar to 2 mm/day along the southwest coast of Greenland. The above results are confirmed by the latest projections from CMIP6 models

    Extreme events in the European renewable power system:Validation of a modeling framework to estimate renewable electricity production and demand from meteorological data

    Get PDF
    With the need to reduce greenhouse gas emissions, the coming decades will see a transition of Europe's power system, currently mainly based on fossil fuels towards a higher share of renewable sources. Increasing effects of fluctuations in electricity production and demand as a result of meteorological variability might cause compound events with unforeseen impacts. We constructed and validated a modeling framework to examine such extreme impact events on the European power system. This framework includes six modules: i) a reservoir hydropower inflow and ii) dispatch module; iii) a run-of-river hydropower production module; iv) a wind energy production module; v) a photovoltaic solar energy production model; and vi) an electricity demand module. Based on ERA5 reanalysis input data and present-day capacity distributions, we computed electricity production and demand for a set of European countries in the period 2015–2021 and compared results to observed data. The model captures the variability and extremes of wind, photovoltaic and run-of-river production well, with correlations between modelled and observed data for most countries of more than 0.87, 0.68 and 0.65 respectively. The hydropower dispatch module also functions well, with correlations up to 0.82, but struggles to capture reservoir inflows and operating procedures of some countries. A case study into the meteorological drivers of extreme events in Sweden and Spain showed that the meteorological conditions during extreme events selected by the model and extracted from observational data are similar, giving confidence in the application of the modeling framework for (future changes in) extreme event analysis.</p

    Impact of Atmospheric Rivers on Future Poleward Moisture Transport and Arctic Climate in EC-Earth2

    Get PDF
    Alongside mean increases in poleward moisture transport (PMT) to the Arctic, most climate models also project a linear increase in the interannual variability (IAV) with future warming. It is still uncertain to what extent atmospheric rivers (ARs) contribute to the projected IAV increase of PMT. We analyzed large-ensemble climate simulations to (a) explore the link between PMT and ARs in the present-day (PD) and in two warmer climates (+2 and +3°C compared to pre-industrial global mean temperature), (b) assess the dynamic contribution to changes in future ARs, and (c) analyze the effect of ARs on Arctic climate on interannual timescales. We find that the share of AR-related PMT (ARPMT) to PMT increases from 42% in the PD to 53% in the +3°C climate. Our results show that the mean increases in AR-frequency and intensity are mainly caused by higher atmospheric moisture levels, while dynamic variability regulates regional ARs on an interannual basis. Notably, the amount of ARs reaching the Arctic in any given region and season strongly depends on the regional jet stream position and speed southwest of this region. This suggests that future changes in dynamics may significantly amplify or dampen the regionally consistent moisture-induced increase in ARs in a warmer climate. Our results further support previous findings that positive ARPMT anomalies are profoundly linked to increased surface air temperature and precipitation, especially in the colder seasons, and have a predominantly negative effect on sea ice.</p

    On the state dependency of fast feedback processes in (palaeo) climate sensitivity

    Get PDF
    Palaeo data have been frequently used to determine the equilibrium (Charney) climate sensitivity SaS^a, and - if slow feedback processes (e.g. land ice-albedo) are adequately taken into account - they indicate a similar range as estimates based on instrumental data and climate model results. Most studies implicitly assume the (fast) feedback processes to be independent of the background climate state, e.g., equally strong during warm and cold periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model for interpretation. Applying a new method to account for background state dependency, we find Sa=0.61±0.06S^a=0.61\pm0.06 K(Wm−2^{-2})−1^{-1} using the latest LGM temperature reconstruction and significantly lower climate sensitivity during glacial climates. Due to uncertainties in reconstructing the LGM temperature anomaly, SaS^a is estimated in the range Sa=0.55−0.95S^a=0.55-0.95 K(Wm−2^{-2})−1^{-1}.Comment: submitted to Geophysical Research Letter

    Linked trends in the South Pacific sea ice edge and Southern Oscillation Index

    Get PDF
    Previous work have shown that sea ice variability in the South Pacific is associated with extratropical atmospheric anomalies linked to the Southern Oscillation (SO). Over a 32 year period (1982–2013), our study shows that the trend in Southern Oscillation Index (SOI) is also able to quantitatively explain the trends in sea ice edge, drift, and surface winds in this region. On average two thirds of the winter ice edge trend in this sector, linked to ice drift and surface winds, could be explained by the positive SOI trend, thus subjecting the ice edge to strong decadal SO variability. If this relationship holds, the negative SOI trend prior to the recent satellite era suggests that ice edge trends opposite to that of the recent record over a similar time scale. Significant low-frequency ice edge trends, linked to the natural variability of SO, are superimposed upon any trends expected of anthropogenic forcing

    Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability

    Get PDF
    The pace of Arctic warming is about double that at lower latitudes – a robust phenomenon known as Arctic amplification (AA)1. Many diverse climate processes and feedbacks cause AA2-7, including positive feedbacks associated with diminished sea ice6,7. However, the precise contribution of sea-ice loss to AA remains uncertain7,8. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime AA appears dependent on the phase of the Pacific Decadal Oscillation (PDO). Our results suggest that for the same pattern and amount of sea-ice loss, consequent Arctic warming is larger during the negative PDO phase, relative to the positive phase, leading to larger reductions in the poleward gradient of tropospheric thickness and to more pronounced reductions in the upper-level westerlies. Given the oscillatory nature of the PDO, this relationship has the potential to increase skill in decadal-scale predictability of Arctic and sub-Arctic climate. Our results indicate that Arctic warming in response to the ongoing long-term sea-ice decline9,10 is greater (reduced) during periods of negative (positive) PDO phase. We speculate that the observed recent shift to the positive PDO phase, if maintained and all other factors being equal, could act to temporarily reduce the pace of wintertime Arctic warming in the near future.J.A.S. was funded by a UK Natural Environment Research Council (NERC) grants NE/J019585/1 and NE/M006123/1. J.A.F. was supported by an NSF/ARCSS grant (1304097) and NASA grant (NNX14AH896). The model simulations were performed on the ARCHER UK National Supercomputing Service. We thank the NOAA ESRL and Met Office Hadley Centre for provision of observational and reanalysis data sets. We also thank D. Ackerley for helping to diagnose the cause of model crashes, C. Deser for commenting on the manuscript prior to submission, and two anonymous reviewers for constructive criticism

    Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf

    Get PDF
    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change1, 2. The increased freshwater output from Antarctica is important in determining sea level rise1, the fate of Antarctic sea ice and its effect on the Earth’s albedo4, 5, ongoing changes in global deep-ocean ventilation6, and the evolution of Southern Ocean ecosystems and carbon cycling7, 8. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models3–5, 9 as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels10, 11, 12, 13, 14. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models

    The Atmosphere above Ny-Ålesund – Climate and global warming, ozone and surface UV radiation

    Get PDF
    The Arctic region is considered to be most sensitive to climate change, with warming in the Arctic occurring considerably faster than the global average due to several positive feedback mechanisms contributing to the “Arctic amplification”. Also the maritime and mountainous climate of Svalbard has undergone changes during the last decades. Here, the focus is set on the current atmospheric boundary conditions for the marine ecosystem in the Kongsfjorden area, discussed in the frame of long-term climatic observations in the larger regional and hemispheric context. During the last century, a general warming is found with temperature increases and precipitation changes varying in strength. During the last decades, a strong seasonality of the warming is observed in the Kongsfjorden area, with the strongest temperature increase occurring during the winter season. The winter warming is related to observed changes in the net longwave radiation. Moreover, changes in the net shortwave are observed during the summer period, attributed to the decrease in reflected radiation caused by the retreating snow cover. Another related aspect of radiation is the intensity of solar ultra-violet radiation that is closely coupled to the abundance of ozone in the column of air overhead. The long term evolution of ozone losses in the Arctic and their connection to climate change are discussed
    • 

    corecore