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Abstract Previousworkhaveshownthatsea icevariability intheSouthPacific isassociatedwithextratropical
atmospheric anomalies linked to the Southern Oscillation (SO). Over a 32 year period (1982–2013), our study
shows that the trend in Southern Oscillation Index (SOI) is also able to quantitatively explain the trends in sea
ice edge, drift, and surface winds in this region. On average two thirds of the winter ice edge trend in this
sector, linked to ice drift and surface winds, could be explained by the positive SOI trend, thus subjecting the
ice edge to strong decadal SO variability. If this relationship holds, the negative SOI trend prior to the recent
satellite era suggests that ice edge trends opposite to that of the recent record over a similar time scale.
Significant low-frequency ice edge trends, linked to the natural variability of SO, are superimposed upon any
trends expected of anthropogenic forcing.

1. Introduction

The increase in overall Antarctic sea ice extent over the satellite record is the sum of larger opposing trends in
different sectors of the Southern Ocean [Comiso and Nishio, 2008; Comiso et al., 2011; Holland, 2014]. To date,
there is no consensus on the causes, but a variety of mechanisms have been proposed: stratospheric ozone
depletion [e.g., Turner et al., 2009], connections to variability of the Southern Oscillation and Southern
Annular Mode [e.g., Yuan and Martinson, 2000; Kwok and Comiso, 2002b; Stammerjohn et al., 2008], increased
precipitation [e.g., Liu and Curry, 2010], increased discharge of glacial meltwater [e.g., Bintanja et al., 2013],
connections to Atlantic warming [Li et al., 2014], and weakened ocean heat flux [Haumann et al., 2014].
Results from recent studies [Holland and Kwok, 2012; Zhang, 2014] reveal large and statistically significant
trends in Antarctic ice drift in most sectors that are associated with intensification of surface winds, suggest-
ing that regional wind-driven changes may be the dominant drivers of ice extent around much of Antarctica.
An understanding of the sources of the trends in local wind anomalies and how they are linked to the global
climate system may enable us to address deficiencies in climate models, which have failed to reproduce the
overall increase in Antarctic ice extent let alone the regional patterns in ice extent [e.g.,Mahlstein et al., 2013;
Polvani and Smith, 2013; Turner et al., 2015; Zunz et al., 2013; Hobbs et al., 2015]. One source of wind anomalies
is the high-latitude atmospheric anomalies in the Pacific sector of the Southern Ocean linked to the Southern
Oscillation (SO)—the focus of this note.

The Southern Oscillation (SO) refers to the seesaw in sea level pressure (SLP) anomalies between the Indian
Ocean-Australian region and the southeastern tropical Pacific on seasonal to interannual time scales
[Philander and Rasmusson, 1985]. The climate anomalies associated with the SO extend to high southern lati-
tudes in winter and summer, affecting regional atmospheric circulation and thus the behavior of the
Antarctic sea ice cover. The strongest correlation between the Southern Oscillation Index (SOI; a measure
of the strength and phase of the SO) and Southern Hemisphere climate anomalies is found in the Pacific sec-
tor of the Southern Ocean, which includes the Amundsen, Bellingshausen, and Ross Seas [e.g., Yuan and
Martinson, 2000; Kwok and Comiso, 2002a; Yuan, 2004; Stammerjohn et al., 2008; Simpkins et al., 2012].
Within this sector, poleward and equatorward wind anomalies are linked to quasi-stationary atmospheric
pressure anomalies associated with the SO, centered several hundreds of kilometers north of the Antarctic
coast, where positive (negative) phases of the SOI are generally associated with lower (higher) sea level pres-
sure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature.

Studies over the last decade or so have established that surface wind anomalies in the Pacific sector, linked to
the SO, contribute to the variability of Antarctic sea ice extent [Yuan and Martinson, 2000; Kwok and Comiso,
2002a; Yuan, 2004; Stammerjohn et al., 2008; Yuan and Li, 2008; Simpkins et al., 2012]. Here our motivation is to
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examine in more detail and focus on the quantitative skill in the use of the Southern Oscillation Index (SOI)
—its trend and variability—in diagnosing the time trend and variability of the winter sea ice edge, drift, and
surface winds. If skill were demonstrated, then the SOI time series may be used as a proxy of sea ice behavior
prior to the present 32 year record. To address this, we use a 32 year record (1982–2013) to examine the
winter connections between ice edge location, ice drift, and the SOI time series. The SOI is the normalized
difference between the standardized Tahiti sea level pressure (SLP) and the standardized Darwin SLP
measurements, and El Niño episodes refer to large negative excursions of the SOI. Here we focus on the
July–November period since the correlation between the SOI and ice edge and the quantitative skill of the
SOI in predicting its trend are highest during this period (discussed later in section 3.2).

The next section describes the data set used. Section 3 outlines our analysis methodology, describes the
linkage between the SOI and surface climate anomalies in the Pacific sector, and provides an analysis of
the use of the SOI time trend to predict ice edge and surface climate anomalies. The last section summarizes
our findings and the implications of the results.

2. Data Description
2.1. Sea Ice Edge and Drift

The locations of the time-varying ice edge used here are sampled at longitudinal increments of 1° (i.e., 360
increments are used to define the circumpolar ice edge). Ice edge is the latitudinal location where the ice con-
centration first exceeds 15% in the transition from open ocean to the consolidated ice cover. Griddedmaps of
ice concentration (1982–2013) are derived from the Scanning Multi-channel Microwave Radiometer (SMMR)
and Special Sensor Microwave Imager (SSM/I) data using the bootstrap algorithm [Comiso and Nishio, 2008].

Monthly ice drifts used here are averages of 2 day motion fields from satellite retrievals [Kwok et al., 1998]. The
gridded fields of sea ice motion ⇀u (100 km spacing)—on a polar stereographic projection—used here are
constructed by blending ice motion derived from two satellite radiometer channels (37 GHz and 85GHz), viz.,

bu⇀ x; yð Þ ¼
X
i

αiu
⇀
i
85 GHz þ

X
j

βju
⇀
j
37 GHz;

whereαandβ are theweightingcoefficientsdeterminedbyanoptimal interpolationscheme [Kwoketal., 2013];
the indices i and j are the available observations from each radiometer channel. A spatial correlation length
scale of 300 km is used to create the interpolated field. This length scale is selected as an intermediate length
scale based on the density of satellite observations but short enough that the expressions of coastal effects
are not noticeably degraded. A consistent and updated time series of passivemicrowave brightness tempera-
ture and ice concentrationfieldswereused toproduce the satellite icedrifts. Uncertainties in the2 daydrift esti-
mates fromtheSMMR(1982–1987) [Gloersen, 2006] andSSM/I (1988–present) [Maslanik andStroeve, 2004]data
sets are between 3 and 6 km (depending on spatial resolution of the passivemicrowave channel) for individual
displacement vectors. Ice motion fields from multiple channels on the same instrument (e.g., 37 GHz and
85GHz on SSM/I) are used when they are available. Together, the length of the ice drift record provided by
thecombinationof sensors spansmore than threedecades.Our records start in1982 to avoidgaps in theearlier
brightness temperature fields. Based on the number of observation and expected uncertainties in the passive
microwave ice motion estimates, the procedure above provides an analysis of the error of each motion esti-
mate. Anexpectedaverageuncertainty of 3–4 km/d in the individual interpolatedestimates is typical, although
the uncertainty varies with the density of measurements available within the neighborhood of each estimate.

2.2. Other Data Sets

Also used are sea level pressure and wind fields from the ERA-Interim atmospheric reanalysis project (http://
data-portal.ecmwf.int/data/d/interim_daily/) and Southern Oscillation Index (SOI) from National Climatic
Data Center (NCDC) (www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/) for the same period.

3. Data Analysis

In this section, we describe the use of ice edge in our analysis; the correlations between time-varying ice edge
and SOI; the linkage between SOI and sea ice and surface climate anomalies; and finally, the concurrent time
trends in the SOI, ice edge, and surface climate anomalies.
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3.1. Ice Edge Location

Instead of utilizing trends in total ice extent in five predefined sectors of the Southern Ocean [Comiso and
Nishio, 2008], typically used in published ice extent analyses, Figure 1a shows the July–November trends in

ice edge (IE) location, αIEt λð Þ, encircling the pole in the 32 year record. (Henceforth, αyx denotes a linear regres-
sion coefficient, α, which relates a dependent variable (y) and an independent variable (x)). With this spatial
depiction (Figure 1a), the variability of circumpolar trends in ice edge, at 1° increments of longitude (λ), is
better resolved. The trends are plotted relative to the mean July–November ice edge locations to highlight
the distance of the winter ice edge from the continent and for easier identification of corresponding ice edge
and regional climate anomalies away from coastal Antarctica (Figures 2 and 3).

It can be seen in the circumpolar wave number 2 pattern that the predominantly positive trends in ice
edge (in red) contributed to the overall equatorward expansion of the winter ice edge around the conti-
nent. There are two distinct lobes with positive ice edge trends: one that spans the Ross, Amundsen,
and Bellingshausen Seas between roughly 150°E and 90°W (clockwise), while the other straddles part of
the Atlantic and Indian Oceans, between ~30°W and 60°E. These circumpolar trends also suggest that
the five geographically predefined sectors used in earlier studies (delineated by the radial lines in
Figure 1) do not necessarily coincide with regions showing distinct sea ice trends. This was also noted
by others [e.g., Raphael and Hobbs, 2014], who have identified distinct regions of sea ice trends and varia-
bility around the Antarctic continent.

3.2. Correlations Between Time-Varying Ice Edge and SOI

Associations between the SOI and circumpolar ice edge locations are most evident in the correlations
between the time records. The results (Figure 1b) show a wave number 2 pattern that is substantially similar

Figure 1. Winter (July–November) trends in sea ice edge (IE) andSouthernOscillation Index (SOI). (a) Trends in IE (in degreesof latitudeperdecade) relative to themean
July–November IE (red positive/blue negative) for 1982–2013. (b) Correlations between detrended IE and detrended SOI (red positive/blue negative). (c) Trends in
IE (sameas in Figure1abut in lighter shade) andcalculated time trendassociatedwith the SOI (i.e., product of SOI trend andcoefficients from regressionof IE against SOI
(1982–2013)). (d) Monthly SOI between 1954 and 2013. (e) Running 32 year SOI trends (centered) between 1954 and 2014; the gray shading shows the ±1 standard
deviation of running 32 year trend, and the red circle shows the recent 32 year trend (1982–2013) addressed here. Also shown are the five geographic sectors typically
used for calculation of trends in ice extent. The color of interior circles shows the confidence level in the trend (blue:>95%, red:>99%, and black: ≤95%).
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to that of the ice edge trends in Figure 1a (i.e., the locations of the positive and negative lobes). Both records
were detrended prior to the calculations to remove correlations due to corresponding trends. Statistically sig-
nificant correlations (>95% confidence level) found in the Pacific sector (hereinafter defined to be between
~180°E and 60°W) show the expected regional connection of the ice edge to the extratropical anomalies of
SO (Figures 1b and 1c). At the maximum in the circumpolar trend (~160°W longitude), the SOI explains ~28%
of the variance in the ice edge. As mentioned earlier, we use only the July–November period because of the
significance and spatial coherence in the correlation between the SOI and IE anomalies and because the
quantitative skill of the SOI in predicting the ice edge trend is highest between July and November
(Figure 1b; also see Figure S1). Jin and Kirtman [2009] also noted that July–November are the months when
the SO teleconnection is strongest. Even though Southern Ocean sea ice trends may be more significant in
summer and fall [Hobbs et al., 2015], and that fall trends may be driven by anomalies in the previous retreat
season [Stammerjohn et al., 2012; Holland, 2014], the focus here is on the skill of the SOI during the winter in
the available ice edge and surface climate records.

To assess the quantitative skill of the SOI in predicting the time trend of the ice edge, we regressed the ice

edge against the SOI; the regression coefficient αIESOI λð Þ� �
relates the changes in ice edge location correspond-

ing to a unit change in the standardized index. The product of the regression coefficient αIESOI λð Þ� �
and the

time trend of the SOI αSOIt

� �
then yield estimates of the time trend in ice edge (viz., eαIEt λð Þ ¼ αIESOI λð Þ�αSOIt ,

where “~” denotes the estimated time trend) in Figure 1c. Over the record, the time trend in the SOI as
plotted in Figure 1e points to a positive time trend of 0.2 ± 0.06 dec�1 or an overall increase of >0.6 in the
standardized index over the 32 year record. We note here that the SOI time trend (Figure 1e) does not depend
on longitude.

The estimated eαIEt λð Þ� �
and observed αIEt λð Þ� �

time trends in ice edge are compared in Figure 1c. It can be

seen that the magnitudes of the estimated and observed trends are best matched within the Pacific sector
(again, between ~180°E and 60°W). Where the significance level is >95% (indicated by the red and blue
colors in interior circles), the estimated trends explain on average more than 65% of the observed trends
(i.e., by averaging the ratios of the two trends where the ratios are <1.0). Away from the Pacific sector,
the estimated ice edge trends predicted by the SOI trend are smaller and have reduced significance.

Figure 2. Composites of ice and surface climate anomalies in positive/negative phases of SOI. (a) Ice edge, (b) meridional ice motion, (c) meridional winds
(in sea ice zone), (d) meridional winds (hemispheric scale), and (e) sea level pressure during the (top) positive (SOI> 1) and (bottom) negative phases (SOI<� 1) of
SOI (1982–2013). Ice edge anomalies are plotted on themean July–November IE for 1982–2013. The dashed contours in Figures 2b and 2c are the ice edge anomalies
from Figure 2a. The light gray contours in Figures 2b and 2c and black contours in Figure 2e are themean July–November ice edge. The loading (number of month) of
each composite pattern is also shown.
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3.3. SOI, Ice, and Surface Climate Anomalies

To visualize the role of SO-induced climate anomalies in the Pacific sector, one approach is to examine the
relationship between the monthly ice edge/surface climate anomalies and extremes in the SOI (in the 32 year
record) by constructing composite maps that show the spatial character of these anomalies during positive
(SOI+: SOI> 1.0) and negative (SOI�: SOI<�1.0) extremes of the SOI (1982–2013) [following Kwok and
Comiso, 2002a]. The anomalies are ice edge, meridional ice motion, meridional wind, and sea level pressure
(SLP). While the composites by Kwok and Comiso [2002a, Figure 7] were of a shorter 17 year data set, the
anomalies show similar spatial patterns.

The SOI+ and SOI� compositemaps in (Figure 2) show anomalies that are organized in distinct spatial patterns
with nearly opposing polarities at the two extremes of SOI (also reported in other studies [e.g., Kwok and

Figure 3. (top) Comparison of observed time trends with (middle) calculated trends associated with the SOI for the 32 year record (1982–2013). (a) Meridional ice
motion, (b) meridional winds (in sea ice zone), (c) meridional winds (hemispheric scale), and (d) sea level pressure. The middle plots show the products between
SOI regression maps and the SOI time trend, and the bottom plots show the detrended correlations with SOI. The gray contours in Figures 3a and 3b are the
calculated ice edge trends from Figure 1c. The black contours are the mean July–November IE. Trends within dashed contours are significant at >95% level.
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Comiso, 2002a; Yuan, 2004; Stammerjohn et al., 2008; Yuan and Li, 2008; Simpkins et al., 2012]). In the Pacific
sector, the positive ice edge anomalies in the eastern Ross/Amundsen Seas and the negative ice edge
anomalies in the Bellingshausen Sea in the SOI+ composite (Figure 2a) resemble the pattern in the
observed trends (Figure 1a). Further, the regions with positive/negative anomalies in ice edge coincide with
the positive/negative anomalies in meridional ice motion and winds. The polarities of the meridional ice
motion and wind anomalies are expected to be positively correlated because ice drift is largely wind driven
[Thorndike and Colony, 1982]; this lends credence to the substantial influence of wind-driven ice drift on ice
edge anomalies discussed by Holland and Kwok [2012]. While these composite maps also suggest potential
asymmetry in the mean response of the ice edge during SOI+ and SOI� phases, the loading of two spatial
patterns (i.e., the number of months in each composite: 19 and 24) seems insufficient and unbalanced to
address potential asymmetries in the response.

On a near-hemispheric scale, the large-scale meridional wind anomalies of opposing polarities extend
beyond the sea ice zone of the Southern Ocean into the Pacific, Atlantic, and Indian Oceans (Figure 2d).
These wind anomalies are associated with the large-scale pattern of SLP anomalies centered north of
Antarctic coast at ~60°S and ~130°W. During SOI+, the low-pressure anomaly leads to anomalous poleward
winds in the Bellingshausen Sea and equatorward winds in the Amundsen and Ross Seas. The opposite
behavior is seen during SOI�. Also evident is the characteristic out-of-phase behavior in SLP between
tropical and polar latitudes in the Pacific sector (Figure 2e). In each of recent La Niña/El Niño episodes
(i.e., extreme positive/negative phases of the SOI) over the last several decades, significant and correlated
changes of the sea ice in the Bellingshausen and Amundsen Seas were reported [e.g., Kwok and Comiso,
2002a], showing unique associations of the Pacific sector of the Antarctic with the SO. This suggests that
trends in the SOI may be useful in understanding not only variability but also trends in ice edge behavior
in this sector.

3.4. Predicted Time Trends

While the composite maps (in Figure 2) show the opposite behavior of the four surface parameters (ice edge,
meridional ice motion, meridional winds, and SLP) in the positive and negative extremes of SOI, they do not
show how their trends are related to trends in the SOI. To do this, we first examine maps of the time trends of

these parameters αMM
t λð Þ; αMW

t λð Þ; and αSLPt λð Þ� �
(Figure 3a, top). Broadly, over the 32 year record, the pola-

rities in the time trends are the same as the polarities of the anomalies in the SOI+ composites (Figure 2a).
Spatially, the positive/negative anomalies coincide with positive/negative trends. These correspondences
suggest a positive tendency in the SOI time trend. Away from the Pacific sector, however, we do not
observe—and it is not expected—that the time-trend patterns share corresponding patterns with the pat-
terns in the SOI phases, as there are contributions by other physical processes to the overall time trend
(e.g., those associated with variability in the Atlantic and Indian Ocean sectors).

Also of interest is the covariance between the surface climate parameters (ice, wind, and SLP) and SOI (ρxSOI,
where x is the surface parameter). The correlationmaps (Figure 3, bottom) of the detrended parameters show
the regions where these parameters are significantly correlated to the SOI. As expected, correlations are
strongest in the Pacific sector, and areas with positive/negative correlations in wind/ice motion correspond
to regions with positive/negative SOI-related trends in ice edge. This reinforces the connection between
the regional ice edge anomalies with the meridional ice motion that are forced by meridional winds asso-
ciated with the trends in SLP anomalies, which are linked to the SO off the coast of Antarctica.

Lastly, the skill of the SOI can be assessed and quantified by forming the product between the time trend of

the SOI αSOIt

� �
and the regression map, in this case, for each surface parameter x (i.e., αxSOI φ; λð Þ, where φ is the

latitude and λ is the longitude). As above, the regression map quantifies changes of the given parameter

corresponding to a unit change in the SOI index and the product (i.e., eαxt φ; λð Þ ¼ αxSOI φ; λð Þ�αSOIt ) provides
linear estimates of the estimated trend. As can be seen in Figure 3 (middle), the estimated trends are compar-
able to the observed time trends (αxt φ; λð Þ; Figure 3, top). Indeed, the patterns in the predicted and observed
trend map in Figure 3 show that within the Pacific sector, there are remarkable spatial correspondences
between the observed trends and those predicted using the trend in the SOI. Again, the trends associated
with the SOI are smaller and less significant away from the Pacific sector and from the influence of the
Southern Oscillation.
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4. Conclusions

In this note, the quantitative skill of the Southern Oscillation Index (SOI) in predicting the time trend and
variability of the sea ice edge, drift, and surface winds (1982–2013) is examined. It is recognized that the
trends of the circumpolar Antarctic ice edge are complex and that these trendsmay be expressions of a variety
of physical mechanisms—some ofwhich are listed in the Introduction. Here our analysis is focused on only the
surface climate anomalies in the Pacific sector (between ~180°E and 60°W) that are connected to variability of
theSOduringwinter. The32 year trend (1982–2013) ofwinter ice edge, icedrift, and surfacewinds in thePacific
sector of the Antarctic—negative in the Bellingshausen Sea and positive in the Amundsen and Ross Seas—are
shown to be linked to a positive trend in the SOI. Regression analysis shows that on average two thirds of the
observed winter (July–November) ice edge trend in this sector can be explained by the positive SOI trend.
This result indicates uniquely that the location of ice edge and regional climate anomalies in the Pacific sector
of the Southern Ocean are strongly correlated to decadal-scale SO variability.

In the Pacific sector, our analysis suggests that the SO contributes not only to thewind anomalies that drive the
variability of the local ice drift and ice edge but also to their time trends. With the demonstrated skill of the SOI
forpredicting the iceedge location in thePacific sector, variability in the32 year running trendsof theSOI canbe
used as aproxy for examiningpast behavior in the regional ice edge and to assesswhether ice edge trendshave
variedover the longer SOI record. Indeed, the timeseriesof 32 year running trend since1954 (Figure1e)exhibits
low-frequencydecadal-scale variability in the SOIwith largenegative excursions in the 32 year trends (and thus
ice edge trends) between the beginning of the record and the early 1990s, before turning positive in the early
1990s. This reversal in the sign of the trends is consistent with reanalysis of Southern Ocean climate variations
since the 1950s [Fan et al., 2014] and coastal ice core records in the Ross, Amundsen, and Bellingshausen Seas
[Sinclair et al., 2014; Abram et al., 2010; Thomas and Abram, 2016]. Consequently, trends in regional ice extent in
the Pacific sector are subject to decadal-scale variability of the SO—the strongest source of natural variability in
the Earth’s climate system [Philander, 1990], and the ability to capture the trends associated with the natural
variability as caused by SO would be desirable but a challenge for the current generation of climate models
[Mahlstein et al., 2013; Polvani and Smith, 2013; Turner et al., 2015; Zunz et al., 2013].
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