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A B S T R A C T   

With the need to reduce greenhouse gas emissions, the coming decades will see a transition of Europe’s power 
system, currently mainly based on fossil fuels towards a higher share of renewable sources. Increasing effects of 
fluctuations in electricity production and demand as a result of meteorological variability might cause compound 
events with unforeseen impacts. We constructed and validated a modeling framework to examine such extreme 
impact events on the European power system. This framework includes six modules: i) a reservoir hydropower 
inflow and ii) dispatch module; iii) a run-of-river hydropower production module; iv) a wind energy production 
module; v) a photovoltaic solar energy production model; and vi) an electricity demand module. Based on ERA5 
reanalysis input data and present-day capacity distributions, we computed electricity production and demand for 
a set of European countries in the period 2015–2021 and compared results to observed data. The model captures 
the variability and extremes of wind, photovoltaic and run-of-river production well, with correlations between 
modelled and observed data for most countries of more than 0.87, 0.68 and 0.65 respectively. The hydropower 
dispatch module also functions well, with correlations up to 0.82, but struggles to capture reservoir inflows and 
operating procedures of some countries. A case study into the meteorological drivers of extreme events in 
Sweden and Spain showed that the meteorological conditions during extreme events selected by the model and 
extracted from observational data are similar, giving confidence in the application of the modeling framework 
for (future changes in) extreme event analysis.   
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1. Introduction 

The transition towards low carbon electricity supply systems in the 
coming decades goes along with the replacement of fossil energy sources 
by renewable sources, mainly hydropower, wind and solar energy, and 

biomass. These renewable energy sources depend on the weather, e.g. 
the availability of sufficient water, wind, or solar radiation. Addition-
ally, seasonal and interannual fluctuations in electricity demand are 
mostly determined by weather/climate [1]. These dependencies make 
renewable electricity supply vulnerable, variable, potentially 
non-dispatchable, and could affect the feasibility and reliability of future 
low carbon electricity supply systems. Recent events have shown how 
interannual variability in climate such as droughts [2,3], long-lasting 
high temperatures, and low wind speeds [4] can have devastating ef-
fects on the prices and security of critical energy services. With an in-
crease in installed renewable capacities and electrification of other key 
sectors, this sensitivity to climate variability will only increase. Key 
aspects of successfully integrating more renewables are therefore: (i) the 
variability of the total renewable electricity generation on different time 
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and spatial scales; and (ii) the possibility of accurately forecasting and 
strategically planning these fluctuations [5]. This makes the simulation 
of meteorological variability, extreme events, and climate change a key 
ingredient in strategic power system planning. 

The extent to which renewable production technologies in Europe 
are sensitive to climate variability has been widely studied, but most of 
those studies focus on isolated production technologies [6,7] or demand 
[1,8]. Multiple studies have mentioned the importance of considering 
integrated energy systems [9–11], and have emphasized the relevance of 
analyzing those with extended periods of weather years to capture 
impact events based on climate variability [12]. 

A common current practice in energy modeling is the use of syn-
thesized time series such as typical meteorological years or average 
availability factors in quantifying how impactful climate change is on 
the key metrics of the energy system. This could potentially lead to 
significant errors in studies examining a high renewable share. Due to 
the warming climate, the statistics and thus variability of weather 
changes. Additionally, there might be combined, non-linear, effects of 
variations in electricity production and demand as a result of relatively 
normal weather that could result in compound events with unforeseen 
extreme impact [13]. 

A number of previous studies analyzed variability [14,15] and ex-
tremes [16–18] in electricity demand and photovoltaic solar (PV) and 
wind generation under present and future climates. A key limitation of 
these studies is that they exclude hydropower production. Globally, 
hydropower is the most important renewable energy source. For 
example, in Europe there is an installed capacity of 123 GW producing 
12% of Europe’s electricity consumption [19]. Additionally, it plays an 
important role in the integrated impact of weather on the power system, 
as it can balance extremes in wind and PV production due to its dis-
patchable nature. 

The main reason hydropower production is often excluded from such 
studies is that it is characterized by complex operating procedures [20]. 
Recent attempts to model the dispatch of country aggregated hydro-
power in Europe relied on the application of machine learning (ML) [21, 
22] or fitting parameters [23] to historic dispatch data from the Euro-
pean Network of Transmission System Operators for Electricity 
(ENTSO-E) Transparency Platform. Although these methods were re-
ported to yield good results for run-of-river hydropower production [21, 
22], where the natural flow of river water flow is used to generate a 
base-load power, and decent results for reservoir hydropower opera-
tions, where dams with a large reservoir are used to store water [22], 
they come with a number of limitations. ML models can only be applied 
to predict the dispatch of the hydropower fleet from the training data, 
making it unsuitable for studying future energy systems. Additionally, 
due to a lack of historical ENTSO-E hydropower production data, the 
application of ML based techniques could potentially lead to overfitting. 
More importantly, extreme events cannot be diagnosed due to the use of 
short timeseries as training sets. 

The application of ML models to historical data that are not repre-
sentative of extreme scenarios or future climate can also be a problem in 
national electricity demand models. Demand models based on meteo-
rological variables often apply ML techniques such as regression models 
to historic demand data [16,21]. Without regulating the behavior of the 
prediction of models for meteorological values outside of the training 
data, the predictive function might yield inaccurate results. 

In this paper we present and validate a modeling framework that 
translates meteorological data into renewable electricity production and 
demand data aimed at scenario analyses of future renewable-dominated 
power systems under changing climate. We introduce four modules for 
the computation of production and demand: 1) a run-of-river hydro-
power production and 2) a reservoir hydropower inflow module based 

Abbreviations 

CBS Dutch Central Bureau for Statistics 
ENTSO-E European Network of Transmission System Operators for 

Electricity 
JRC Joint Research Centre 
LSTR logistic smooth transmission regression 
MAD median absolute deviation 
ML machine learning 
PV photovoltaic solar 
RMSE root mean square error 
rRMSE relative root mean square error 
ERA5 the fifth generation atmospheric reanalysis of the global 

climate by the European Centre for Medium-Range 
Weather Forecasts 

GMTED2010 Global Multi-resolution Terrain Elevation Data 2010 

Symbols 
C merit 
cfhydro hydropower capacity factor 
Dnet net demand after using all non-dispatchable sources MWh 
Eout

hydro energy dispatch hydropower reservoir MWh 
Ein

hydro theoretical energy inflow into reservoir MWh 
EPV photovoltaic energy production MWh 
Eror run-of-river hydropower production MWh 
Ewind wind energy production MWh 
fror fraction-of-discharge used by run-of-river hydropower 
IChydro the installed hydropower capacity MW 
Pin

hydro hydropower inflow potential MW 
Pror run-of-river power output MW 

QICh rated discharge of installed hydropower capacity m3 s− 1 

Qq=75 75th percentile discharge of an average year m3 s− 1 

Ta,mean population weighted daytime air temperature ◦C 
vci cut in wind speed m s− 1 

vco cut out wind speed m s− 1 

vr rated wind speed m s− 1 

α1 model parameter - infliction point MWh 
ηres reservoir hydropower plant efficiency 
ηror run-of-river hydropower plant efficiency 
Δt size of model time step hours hours 
cfPV capacity factor photovoltaic solar 
cfwind capacity factor wind 
D electricity demand MWh 
f fraction-of-discharge 
F logistic smoothing function 
g gravitational acceleration m s− 2 

H hydraulic head m 
ICPV installed photovoltaic solar capacity MW 
ICwind installed wind capacity MW 
kx recession coefficient 
m the number of years in the database years years 
n the number of timesteps in a year 
Q discharge m3 s− 1 

roaccu accumulated runoff m3 s− 1 

rdd relative deviation difference variable 
RES country aggregated reservoir storage level MWh 
rl residual-load MWh 
t time days days 
ρ water density kg m3  
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on a routing scheme to approximate river discharge; 3) a hydropower 
dispatch module described as a linear programming problem that min-
imizes the difference between demand and renewable electricity pro-
ductions over a timeseries where we push the solution to follow the 
national load curve; and 4) a demand module on a national level where 
we force a linear heating and cooling function to allow for extrapolation 
to temperatures that do not occur in the historic dataset. 

In addition, we supplement these novel modules with PV and wind 
production modules from previous work [16], generate gridded 
installed capacity files from various databases, and validate all six 
modules on an aggregated country-level using ENTSO-E production and 
demand data and daily ERA5 reanalysis climate data [24]. Reanalysis 
combines models with past weather observations to produce (historic) 
gridded estimates of atmospheric, land, and oceanic climate variables. 
Furthermore, to assess how the modeling framework performs in 
selecting high-impact events, we apply it in a case-study of Sweden and 
Spain to analyze the meteorological conditions that lead to high impact 
events in the integrated power system and compare the results to 
ENTSO-E production data. 

Although we validated the proposed framework for the current Eu-
ropean power system with reanalysis data, it can easily be applied to 
simulate the meteorological risks and impacts on future power systems 
with a different/higher share of renewables and under different climate 
scenarios. The framework is suitable for analysis with large ensemble 
climate data on daily resolution. Two possible applications are 1) the 
selection of meteorological conditions of interest for the energy system, 
which can, in turn, be used on a higher resolution as input for higher 
resolution energy system models, or 2) the risk analysis of (long-lasting) 
extreme events in a highly renewable energy system that can be used to 
make large-scale tactical decisions for the energy transition such as 
additional (non-meteorological dependent) energy storage and non- 
renewable production requirements. Overall, this framework aims to 
be a step in bridging the disconnect between climate and energy mod-
elers by providing a possible high-level step in an iterative trans-
disciplinary process [12]. 

2. Description of modeling framework 

Here we present the six modules that were used in the modeling 
framework. We calculated daily hydropower reservoir inflow and PV, 
wind, and run-of-river production for each grid cell. To validate the 

model, we aggregated the results to national levels. Demand and hy-
dropower dispatch are also computed on a national level. 

Fig. 1 shows a flowchart explaining how we converted meteorolog-
ical data into electricity data, and which other (societal/energy system) 
data are used. 

2.1. Demand module 

Following the approach of [16] the relation between demand and 
temperature is described by applying a logistic smooth transmission 
regression (LSTR) model [25,26] to population weighted temperatures 
(Ta,mean) –temperatures in highly populated areas disproportionally 
impact energy demand– and historic demand (D). 

The LSTR model allows for a smooth transition between the two 
linear regimes of heating demand due to low temperatures and cooling 
demand due to high temperatures: 

D(t)=
[
α1 + β1Ta,mean(t)

]
[1 − F(t)] +

[
α2 + β2Ta,mean(t)

]
F(t)

With α1, α2 the zero intercepts and β1, β2 the slope of the linear 
heating and cooling regimes respectively. The logistic smoothing func-
tion F is expressed as: 

F(t) =
[
1 + exp

(
− ζ

(
Ta,mean(t) − c

))]− 1
, ζ > 0,

With ζ a smoothing factor and c the infliction point. We account for 
different heating and cooling behavior between countries and days of 
the week by applying the LSTR model for each country individually and 
for weekends and weekdays separately. To allow for extrapolation of 
heating and cooling regimes towards extreme conditions, we force the 
linear regimes to cover at least 80% of the heating or cooling data 
though a number of steps. Each step is performed for weekend and 
weekdays demand data per country. The tipping point between heating 
and cooling regimes is determined by assessing the minimum point of 
the rolling average demand over a window of 10% of the countries’ 
temperature range. Cooling and heating data are treated separately and 
the data is binned in 0.1 ◦C bins, resulting in a sequence of points. We 
then determine the linear regime of this sequence of points in accor-
dance with the method presented by Ref. [27]. Next, we apply a linear 
regression fit to the demand data that fall within the temperature limits 
of the linear regime. The gradients resulting from this linear regression 
are forced in the cooling and heating regimes of the LSTR model (β1 and 

Fig. 1. Flowchart explaining how we converted meteorological data into electricity data. The flowchart gives a schematic overview of the modeling framework with 
in blue the inputs and in orange the outputs of the model. With the following abbreviations: ROR is run-of-river, CF is capacity factor, JRC is the Joint Research 
Centre, and PV is photovoltaic. 
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β2). The above procedure was followed because applying an LSTR model 
to the demand and temperature data without this constraint can result in 
a fit in which the linear regimes lie mostly outside of the data (Fig. 2), 
making extrapolation to climate scenarios with more extreme temper-
atures unreliable. For each country, we assume that the maximum de-
mand for cooling or heating is not higher than the maximum daily 
demand recorded in that regime during the weekend or weekday by 
ENTSO-E. Supplementary Information A provides tables with the fitting 
parameters and maximum heating and cooling demand for all European 
countries. 

2.2. Photovoltaic solar energy production module 

The daily PV energy production (EPV) is computed according to: 

EPV (t) = ICPV ∗ Δt ∗ cfPV(t)

With ICPV the installed PV capacity in the grid cell, Δt the timestep of 
the model and cfpv the timestep capacity factor. Because the efficiency of 
a PV module is a result of its temperature, the timestep capacity factor 
depends on incoming solar radiation, windspeeds and daytime mean 
temperatures and is calculated assuming that all PV modules are placed 
horizontally and that they are operational during all daytime hours 
according to the method described in Refs. [16,29]. 

2.3. Wind energy production module 

Similar to PV production, we computed wind energy production 
(Ewind) as: 

Ewind(t)= ICwind ∗ Δt ∗ cfwind(t)

with, ICwind the installed wind capacity in the grid cell and cfwind(t) the 
timestep capacity factor. The timestep capacity factor is computed with 
a cubic power curve, with onshore and offshore specific cut-in, rated and 
cut-out windspeeds (vci, vr and vco respectively). Meteorological wind 
data is typically available at a standardized height of 10 m. For the 
computation of the capacity factor the 10 m wind speed is scaled to hub 
height with the power law [30]. We neglected downtime of the wind 
turbines for maintenance. For a full description of the method see 
Ref. [16]. 

2.4. Hydropower reservoir energy inflow module 

For the approximation of hydropower reservoir water inflow, we 
route runoff data along flow direction routes to form discharge patterns. 
To reduce the computational time, this routing is done at 0.5◦ × 0.5◦

resolution. The routing scheme starts at the grid cells with no accumu-
lation (the highest point in the basin) and follows the flow direction 

downstream, adding the accumulated runoff to the locally generated 
runoff. We approximate discharge delays with a flow recession coeffi-
cient such that [31]: 

Q(t)= (1 − kx) ∗ roaccu(t) + kx ∗ Q(t − 1)

With Q the cell discharge, kx the recession coefficient and roaccu the 
accumulated runoff. Delays due to water accumulation in lakes or res-
ervoirs, anthropogenic water usages and water management, such as 
dams, are not considered. With the resulting discharge, we calculate the 
available hydropower (Phydro [MW]) per grid cell as: 

Pin
hydro(t)= ρ g H ηres (Q(t) ∗ f ) , f ≤ 1 

With ρ the water density (998 kg m3), g the gravitational acceleration 
(9.81 m s− 2), H the hydraulic head and η the constant hydropower plant 
efficiency. In reality, hydropower turbine efficiencies will depend on the 
discharge and available head. 

To allow for the use of large grid cells we assign a fraction-of- 
discharge (f [ − ]) to each grid cell based on the installed hydropower 
capacity (see Fig. 3). We determine this factor by using the yearly mean 
capacity factor and a mean yearly cumulative discharge in the grid cell 
according to: 

f =

∑m

y=0

∑n

t=0
Q(t)

m

QICh ∗ Δt ∗ n ∗ cf hydro 

With m the number of years in the dataset, n the number of timesteps 
per year, Δt the number of hours per timestep, QICh the rated discharge of 
the installed capacity and cfhydro the mean annual hydropower capacity 
factor in the grid cell expressed as the ratio of power generated to the 
hypothetical maximum of the installed capacity for a specific time 
period. The rated discharge is expressed as: 

QICh =
IChydro

ρ g H η 

With IChydro the installed hydropower capacity in the grid cell. We 
assume that all incoming discharge into the reservoir in an average year 
is used by the powerplant during that year. Because f gives the ratio of 
incoming water and potential energy production in a grid cell, it corrects 
for anthropogenic water consumption and reservoir evaporation. We 
express the available reservoir hydropower energy, (Ein

hydro(t)), as the sum 
of the daily available hydropower and the timestep in hours: 

Ein
hydro(t)=Pin

hydro(t) ∗ Δt  

Fig. 2. LSTR model fit for Italy and Estonia with (solid line) and without (dashed line) linear regime forcing. In orange the weekday and in blue the weekend demand 
data [28]. 
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2.5. Hydropower run-of-river production module 

The utilizable discharge water volume of run-of-river hydropower 
plants depends on the installed capacity in the grid cell. Runoff hydro-
power plants are often designed with an exceedance between 10 and 
40% [32]. Above the installed capacity (a cut-off or threshold level), the 
plant cannot harness discharge. We assume the average probability and 
selected an exceedance of 25%, reflecting the probability that the 
discharge will exceed the rated discharge. Similar to the hydropower 
reservoir inflows, the factor fror corrects for the discharge fraction in the 
grid cell used by the hydropower plants, defined as the ratio between the 
maximum discharge of the installed capacity and the 75th percentile 
discharge of an average year (fror = Qq=75/QIC). We assume that 
run-of-river plants have no reservoir storage capacity. The run-of-river 
power output, (Pror), is expressed as: 

Pror(t) = ρ g H ηror (Q(t) ∗ fror ),  fror ≤ 1 ,

Since we assume no downtime due to maintenance, the available 
run-of-river electricity production (Eror) is a function of the available 
power and the timestep of the model: 

Eror(t)= Pror(t) ∗ Δt  

2.6. Aggregated hydropower reservoir dispatch module 

In contrary to wind, PV solar and run-of-river hydropower produc-
tion, hydropower reservoir production is a dispatchable source of en-
ergy. As long as there is water available in a reservoir, its power output 
can be adjusted according to demand at the request of power grid op-
erators. To approximate this decision-making process, we formulate the 
national dispatch of hydropower energy as a moving horizon linear 
programming problem that minimizes the total difference between 
electricity demand and renewable electricity productions (residual- 
load) over a timeseries, while we push the solution to follow the national 
load curve so as to minimize the maximum residual-load (rlmax (t)). We 
move the horizon with steps of 28 days and run the minimization 
problem for windows of a year. We assume that all non-dispatchable 
renewable sources are fully used before using reservoir hydropower 
(Eout

hydro ) such that: 

rl(t)+Eout
hydro(t) ≥ Dnet(t)

Where Dnet is the net demand after using all non-dispatchable sources 
(Dnet = D − Eror − Ewind − EPV ,  Dnet ≥ 0) and rl is the residual-load. We set 
the aggregated country reservoir storage level (RES) to be the same at 
the beginning and the end of the timeseries and express it as a basic 
water balance that neglects any form of evaporation or condensation: 

RES(t)=RES(t − 1)+Ein
hydro(t − 1) − Eout

hydro (t − 1)

We set the reservoir storage level at the beginning of each optimi-
zation window to match the storage level at the end of the 28th day of 
the previous window, and the storage level at the 14th day of the 

optimization window to the reservoir level on the 42nd day of the pre-
vious window. This forces a 14-day overlap between the two optimi-
zation windows; which prevents sudden jumps in the dispatch and 
maintains the water balance between windows. 

To approach a realistic dispatch and prevent an overoptimized 
output, but fill reservoirs with foresight for the rest of the year, we 
construct the optimization input from two different sources. The first 42 
days of the inflow and net demand input values come from the daily 
variables computed with the production and demand modules described 
above (prediction). On the other days of the optimization window, they 
are based on a mean estimation. Additionally, to prevent the optimiza-
tion from draining the reservoir, we use mean estimated reservoir levels 
to set a minimum reservoir level at the end of the moving window. Fig. 4 
shows a schematic example of the hydropower reservoir dispatch results 
from three moving optimization windows and how they contribute to 
the output. 

The reservoir sizes are bound by a maximum storage capacity and the 
daily energy production is constrained by the installed hydropower 
plant capacity. Additionally, to push the solution to follow electricity 
demand we define a relative deviation difference variable (rdd). Under 
the assumption that 

∑
Eout

hydro(t) =
∑

Ein
hydro(t) we express rdd as: 

rdd(t)=
Dnet(t)– Dnet

Dnet
−

Eout
hydro(t)– Ein

hydro

Ein
hydro 

We define the objective function to minimize the total and maximum 
residual load and push dispatch to follow demand as: 

min
(∑[

Crl ∗ rl(t) + Chydro ∗ Eout
hydro(t) + rdd(t)

]
+ rlmax

)

With Crl and Chydro expressing the merit order of residual-load and 
hydropower respectively. It should be noted that since rdd is a relative 
value it is several orders of magnitude smaller than the demand and 
hydropower production. Its influence on the total cost of the system is 
small, but when there are multiple solutions that result in (approxi-
mately) the same residual-load, the solution that follows the net demand 
best is favored. Fig. 5 shows the effect of adding the rdd and rlmax to the 
objective function. The difference between the total residual-load over 
the timeseries of 7 years for the different objective functions for Sweden 
is only 2.3%. 

3. Methodology and data 

The overall validation methodology includes the preparation of 
meteorological data, computation of country-specific demand fits, gen-
eration of installed capacity maps, selection of validation data and 
analysis of the modeling framework performance. 

We ran the modules for present-day installed capacities of renewable 
energy technologies and with historic meteorological data on a daily 
timestep (Δt = 24 h) for the European countries. We compared the 
modelled results to electricity production and demand data from 

Fig. 3. Schematic of the hydropower reservoir inflow module and the application of the fraction-of-discharge.  
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ENTSO-E [28]. Fig. 6 shows the European countries that are included in 
the validation. 

3.1. Meteorological input data 

For the computation of demand and renewable energy production 
we used a total of five meteorological variables. Three meteorological 
variables were collected from the ERA5 reanalysis dataset [24] as input 
for the wind and PV solar production and demand modules: 10 m wind 
speed [m s− 1], near-surface temperature [◦C] and solar irradiance [kW 
m2]. The ERA5 data are available on a 30 km2 grid and at hourly 
timesteps, and we resampled them to daily timesteps. Runoff 

[m/timestep] was collected from the ERA5-land database [33], remap-
ped to a 0.5◦ × 0.5◦ resolution and summed to daily timesteps for the 
computation of hydropower production. Since the ENTSO-E trans-
parency platform has data starting from 2015, the reanalysis data were 
collected for the period 2015–2021. 

3.2. Installed capacities 

The geospatial information of the renewable powerplants installed 
capacities were collected from various sources and combined into grids 
with the resolution of the meteorological variables. For the validation 
we took the year 2020 as a reference (Fig. 7). 

The locations and power capacity estimations of PV and wind farms 
(groups of modules or turbines in the same location) were computed 
based on OpenStreetMap data of 2020 according to the method pre-
sented by Ref. [34]. We converted the coordinate data to gridded data by 
summing the installed capacities of all the farms that fall into a grid cell. 
Due to the differences in height, capacities, and power curves of offshore 
and onshore wind turbines, we modelled the two types separately. 
Because the computation of energy farms with Dunnets method [34] 
resulted in almost no offshore locations, additional open source data 
were used to generate gridded data of installed offshore wind capacities 
[35]. EMODnet provides vector data in the form of polygons on offshore 
windfarms and their capacities in European seas. We converted the 
available shapefiles to gridded data by evenly distributing the installed 
capacity of the offshore windfarm over all the grid cells that overlap 
with the windfarm polygons in the dataset. 

We extracted run-off-river and reservoir hydropower plant locations 
from the Joint Research Centre (JRC) Hydro-power database [36]. That 
dataset contains geospatial and capacity information of many European 
hydropower plants, but lacks hydraulic head data for 60% of the plants. 
Therefore, we approximated the hydraulic head by taking the difference 
between the maximum and minimum elevation based on GMTED2010 

Fig. 4. Illustrative overview of three moving horizon optimization windows (in blue) and how they contribute to the output (in orange). With the results on the 
timesteps with prediction input values (thick lines) and the results on the timesteps with mean estimated values (thin lines). 

Fig. 5. Results of hydropower reservoir dispatch optimization for objective function with (orange line) and without relative deviation difference between demand and dispatch 
(rdd) (grey dashed line) and maximum residual load (rlmax) (blue dashed line) in the minimization objective function. With the ENTSO-E production [28] as a reference 
(grey line). 

Fig. 6. In orange the countries that are included in the validation.  
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elevation data of 25 m resolution [37]. For reservoir plants, the differ-
ence between maximum and minimum elevation was linearly fitted to 
the available hydraulic head data in the JRC database. Because of the 
use of penstocks and cascade reservoirs, the hydraulic head of reservoir 
hydropower plants can be the result of an altitude difference that covers 
more than the grid cell size of 25 m. This was accounted for by 
computing the altitude difference from a grid box covering multiple grid 
cells. To determine the size of the grid box that yields results that best 
approximates the hydraulic head, we compared the correlation relation 
between elevation difference and reservoir hydropower plants hydraulic 
head of the JRC database for different grid box sizes. The highest cor-
relation (0.62) occurred for a box of 11 × 11 grid cells around the co-
ordinates of the reservoir hydro plant (see Fig. 8). 

For run-of-river powerplants, we estimated the hydraulic head as the 
altitude difference within the grid cell. We assigned a hydraulic head of 
1.8 m to all powerplants in grid cells without elevation difference, 
corresponding to the minimum hydraulic head in the JRC database. We 
assigned these estimated heights to each hydropower plant in the 
dataset, and combined the dataset into a 0.5◦ × 0.5◦ grid by taking the 
sum of the installed capacity and the capacity weighted hydraulic head 
for all powerplants in a grid cell. 

3.3. Demand module input data 

We applied the LSTR model for each country to historic demand data 
from the ENTSO-E data portal and transparency platform [28] and to 
population weighted temperatures computed from 1 km Worldpop data 
[38] and ERA5 near surface temperature data [33], aggerated on na-
tional level. We remapped the population data to the ERA5 grid by 
summing all values within larger grid cells. 

We applied the LSTR model to demand data for the period 
2006–2021 for all European countries, except for Albania and Belarus 
(due to a lack of data). Prior to applying the regression model, we 
cleaned the ENTSO-E demand data in three steps. First, by means of a 
visual inspection of the country demand data over time, we removed 
years with unreliable looking data from the dataset. For example sudden 
demand increases or decreases, periods with missing data, and very 
irregular data. 

Secondly, to remove outliers from the data we applied a median 
absolute deviation (MAD) filter [39]. Since the demand data are subject 
to seasonal changes, we used the MAD filter on monthly bins to select 
monthly outliers, assuming a normal distribution (consistency constant 
of 1.4826) and a conservative threshold of 3.5 [39]. Less conservative 
thresholds resulted in the removal of low or high demand values that 
could be explained by the seasonal nature of demand. 

Thirdly, since we are looking for the relation between temperature 
and demand, we removed days of the year that repeatedly showed a 
statistically lower electricity demand (often due to social behavior) than 
expected at a given daily temperature from the dataset. For each 
country, we grouped the daily demand values in one-degree tempera-
ture bins, and the days of the year that occurred more than 70% of the 
time in the lowest 25% of a bin were removed. For all countries, we 
removed 50 different days of the year. For all countries, except Moldova, 
Montenegro and Bulgaria, the statistically removed days were public 
holidays. Fig. 9 shows the distribution of removed days of year per 
country. Countries that are not in the figure did not have any days 
removed. The days that were most often removed were 26th of 
December (in 24 countries) and the 1st of May (in 20 countries). See 
Supplementary Information A for detailed information and figures of the 
ENTSO-E data used for the LSTR model. 

3.4. Validation input parameters 

Supplementary Information B gives an overview of the input pa-
rameters used for the validation. The power curves for offshore and 
onshore wind turbines were determined by running the modules for 
different settings and selecting values that resulted in the highest cor-
relation between modelled production and ENTSO-E wind energy pro-
duction. The delay in discharge is approximated by applying the same 
recession coefficient to all grid cells. Similar to the power curves, this 
coefficient was selected by analyzing the correlation between the run-of- 
river hydropower module and ENTSO-E production for different values. 
Also, the hydropower storage capacities were determined based on 
different optimization runs and comparing correlations between the 

Fig. 7. Aggregated installed capacities for renewable power plants in Europe 2020 as used in the validation.  

Fig. 8. Linear relation between elevation difference in 11 × 11 gridbox of 
GMTED2010 data [37] and reservoir hydropower plants hydraulic head of JRC 
database [36]. 
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runs and observed data. 

3.5. Validation data 

To validate the computed renewable energy production and demand, 
we compared the country aggregated outcomes to data from the ENTSO- 
E transparency database. We collected five production types for vali-
dation: (i) offshore wind; (ii) onshore wind; (iii) solar PV; (iv) hydro-
power reservoir; and (v) hydropower run-of-river. Production was 
resampled to daily data. Since we are interested in validating interan-
nual variability, we deleted all countries that have less than one year of 
data from the ENTSO-E dataset. 

Additionally, weekly stored energy values for hydro reservoir and 
storage plants were retrieved to approximate hydropower reservoir 
inflow values. We deducted the historical weekly hydropower inflow 
data (Ein

hydro) from the weekly aggregated production (Ehydro,val) and the 
difference in reservoir filling (RESw[MWh]) between the beginning and 
end of the week: 

Ein
hydro,val(w)=RESval(w+ 1) − RESval(w) − Ehydro,val(w)

There are a number of countries with installed renewable capacities 
in the model but no generation data in ENTSO-E, or vice versa. We 
removed these energy technologies from the validation and excluded 
them in the total renewable energy production metric. Table 1 gives an 
overview of the removed countries. Additionally, the installed capacity 
in the model and the reported yearly installed capacities by ENTSO-E are 
not the same. To allow for a comparison between the observed and 
modelled data we normalize the production values over the installed 
capacities to get the capacity factor timeseries. The ENTSO-E installed 
capacities are available as yearly data-points, which we linearly inter-
polated to correct for the trend in installed capacities. For reservoir and 
run-of-river hydropower production we deleted some sections of unre-
liable looking ENTSO-E data prior to validation, see Supplementary 
Information D for details. 

3.6. Evaluation of the modeling framework 

To evaluate the accuracy and performance of the electricity and 
demand modules, we used the following metrics: the root mean square 
error (RMSE), the relative root mean square error (rRMSE), the coeffi-
cient of correlation (r) and the z-score. 

Pearson’s coefficient of correlations provides information on the 
strength of the linear relationship between the ENTSO-E and modelled 
values. The RMSE describes the average difference between the 
modelled data and the electricity observations by ENTSO-E in units of 
the observed value. To provide a relative measure (rRMSE), we 
normalized the RMSE to the mean daily validation data. The z-score 
provides a measure of how far a data point is from the mean, expressed 
in terms of standard deviations. If the z-score is zero, the outcome equals 
the mean. We used the z-score to find the most extreme anomalies in the 
modelled data and validation data. To correct for seasonality, the z-score 
is defined to data grouped per week of the year. The largest and smallest 
z-score of the time-series describes the largest anomalies in the dataset. 

By using the capacity factors for the model validation, the accuracy 
of the ENTSO-E values becomes highly dependent on the correspon-
dence between their reported installed capacities (once a year) and their 

Fig. 9. Number of days with statistically low energy use in temperature bins of one-degree Celsius for European countries that were removed from the ENTSO-E load 
data before applying the LSTR model. Countries that are not in the figure did not have days removed. Abbreviation of country names can be found in Supplementary 
Information C. 

Table 1 
Countries that we removed from the model and ENTSO-E data for the validation 
of the model. Abbreviation of country names can be found in Supplementary 
Information C.   

Countries removed from model Countries removed from 
ENTSO-E 

Onshore wind UKR, LUX, SVK MKD, SVN 
Offshore wind ESP, SWE  
PV UKR, CYP, EST, FIN, IRL, LUX, 

LVA, 
NOR, POL, SRB, SWE  

Run-of-river BIH, GRC, MNE, SWE NOR, EST, LTU 
Hydro 

reservoir 
BEL, FIN, IRL, LVA, MKD, SVN, 
GBR   
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timeseries production data. We found multiple sections of the ENTSO-E 
data where this led to unrealistic capacity factors (very low, higher than 
1, or sudden yearly jumps), suggesting that the reported installed ca-
pacity is not reliable. Therefore, we mainly report on correlation be-
tween values; any absolute measures such as RMSE should be 
interpreted with care. 

4. Results and discussion 

In presenting the analysis on overall performance of the modeling 
framework, we will show results for all countries but highlight two: 
Sweden and Spain. We focus on these two countries because both Spain 
and Sweden have all four renewable production technologies installed in 
the model, but have different demand profiles (summer cooling through 
air-conditioning in Spain, but not in Sweden) and hydropower opera-
tions (seasonal in Sweden and more short-term in Spain), resulting in 
different system responses to meteorological drivers. The results of all 
other countries can be found in Supplementary Information E. 

4.1. Overall model performance 

4.1.1. Demand 
Fig. 10 shows the ENTSO-E and modelled demand time series for 

Sweden and Spain in 2021. To allow for evaluation of the demand 
module, we trained the demand module with temperature data up to 
July 2021 and used the second half year of 2021 as testing data. Sweden 
has high heating demands in colder seasons and a long period of lower 
demand in summer, suggesting little to no use of air-conditioning. In 
Spain, there is an elevated electricity demand both in summer and in 
winter, corresponding with a heating and cooling demand. Both for 
Sweden and Spain, the seasonal cycles determined by their respective 
climates are captured well by the demand module. 

Furthermore, in both countries we observe a weekly cycle that is 
most likely the result of human activity and social behaviors [1]. In the 
module we approximate this with separate weekend and weekday LSTR 
which works well on most days of the week, but results in an over-
estimation of the demand on Sundays in Spain (Fig. 10). 

4.1.2. Production 
With mean values across all countries larger than 0.86, correlations 

are high for wind, offshore wind and PV solar production. However, we 
find substantial regional differences in model performance for run-of- 
river and reservoir hydropower (Fig. 11). 

4.1.3. Wind energy production 
Both onshore and offshore wind production have a mean correlation 

of 0.87 and a coefficient of determination exceeding 0.75, showing that 
there is a strong linear association between the modelled and validation 
data that explains a large part of the variation in data. Consequently, 
countries that have a large share of wind and PV solar in their renewable 
mix, e.g. Denmark and Germany, have a high model performance for 
their total renewable electricity production (Fig. 11). However, the 
module structurally overestimated wind electricity production in the 
higher ranges of capacity factors, resulting in a high rRMSE ranging from 
37% to 50% for offshore winds and from 27% to 358% for onshore winds 
(Fig. 12). This can have a number of causes: the actual average rated 
windspeed of the turbines is higher than the values used in the module, 
the computed wind speeds at hub-heights of the wind turbines are too 
high, the operational time of 24 h per day is a significant overestimation 
or there is a bias in the ERA5 data. The high rRMSE in combination with 
a high correlation can sometimes be explained by the aforementioned 
discrepancy between installed capacity and reported electricity pro-
duction in the ENTSO-E data. An example is the Netherlands (r = 0.94 
and rRMSE = 358% for onshore wind); i.e. the installed capacity re-
ported by ENTSO-E is similar to the installed capacity reported by the 
Dutch Central Bureau for Statistics (CBS) [40], but the computed ca-
pacity factor from the ENTSO-E data (0.11 in 2019) is more than 2 times 
smaller than the one reported by CBS (0.26 in 2019): not all wind energy 
production is reported by ENTSO-E, explaining the high rRMSE. 

4.1.4. PV solar energy production 
The PV module follows the daily, seasonal and inter-annual vari-

ability of solar PV production well for most countries, but slightly 
overestimates production in summer (Figs. 11 and 12). For countries 
with relatively lower correlations such as Great Britain and the 
Netherlands (r = 0.68 and r = 0.74 respectively), the ENTSO-E capacity 
factor data show year-to-year jumps as a result of increases in reported 
installed capacities that don’t correspond with increases in production 
(see Supplementary Figure E− 2). Isolating the year 2020 results in 
correlations >0.97, again implying an error in the reported yearly 

Fig. 10. ENTSO-E (blue dashed line) and modelled (orange line) demand timeseries [28] of Sweden and Spain with the dashed grey line marking the transition 
between training data of the demand module (left of line) and testing data (right of line). The dots on the graph mark weekend-days. With r the correlation co-
efficient, p the statistical significance and RMSE the Root Mean Squared Error between ENTSO-E and modelled demand of the testing dataset (from July 2021). The 
insert in Spain shows a zoom-in of the demand during the third week of April. 
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change of installed capacities. This has previously been noted by 
Ref. [41]. 

4.1.5. Run-of-river hydropower production 
For most countries, seasonal and interannual variability is captured 

well by the run-of-river hydropower’s module. Only three countries 
have weekly correlations below 0.65: Hungary, Croatia and Finland 
(Fig. 11). The reason for the low performance in those countries is un-
clear and could be found in either the location of installed capacities, 
accuracy of climate input data and routing scheme, quality of observed 
data, and/or the module assumptions. Fig. 12 reveals that the module 
performs poorly on daily variability for all countries. One explanation 
for this could be that we assumed that run-of-river hydropower plants 
have no storage available, but in reality, many run-of-river plants will 
have a small water storage behind a weir storing enough water to allow 
for load balancing for a week or even more. Additionally, the delay 
approximation using recession coefficients apparently is not accurate 
enough to model daily discharge variability. 

4.1.6. Reservoir hydropower dispatch 
The reservoir dispatch module captures hydropower production, 

characterized by complex operating procedures, surprisingly well for 
many countries (Figs. 11 and 12). The correlations we found are only 
slightly lower than those in a recent study that applied a random forest 
model to the ENTSO-E data to reconstruct run-of-river and reservoir 
hydropower generation [22], and it outperforms the dispatch optimi-
zation model applied by Ref. [23] in capturing historical seasonal 
dispatch for Norway and Spain. Montenegro, Bosnia and Herzegovina 
and Switzerland have a large share of hydropower that is poorly 
captured by the module, however. These countries already show a low 
correlation between the modelled inflow and ENTSO-E data. As with the 
countries with poorly modelled run-of-river productions, it is difficult to 
determine the exact cause. One possible explanation could be that the 
inflow into the hydropower reservoir is not related to the natural 
discharge of the river due to, for example, cascading reservoirs. Fig. 13 
shows that the module is able to estimate hydropower production in 
decent correlation with observed data for both countries with long-term 
and shorter-term storage. High incoming discharges in Sweden occur in 
summer as a result of snowmelt. The incoming discharge is stored until 
winter when Sweden experiences a peak in demand and it is dispatched. 
The module reproduces this behavior well. Even though the module 
underestimates the delay in incoming discharge in Sweden, showing a 
peak later in summer compared to the ENTSO-E data, this is made up for 
by the dispatch optimization. In general, delayed or earlier peaks in 
inflow as a result of the simplified routing scheme can at least partially 
be “corrected” by the dispatch module. 

In Spain there is a high correlation between inflow and dispatch, 
suggesting that, in general, there is no long-term storage in Spanish 

reservoirs. The module captures the seasonal and interannual variability 
well (see lower production in spring 2017 and 2019 in Spain), but has 
difficulty capturing week-to-week variations as a result of control 
decisions. 

4.2. Prediction of extreme events 

To analyze the modeling framework’s performance in selecting days 
with statistically low energy production, we computed the z-score for 7- 
days rolling mean capacity factors, relative to the timeseries’ mean ca-
pacity factor and standard deviation of that weekly period. Fig. 14 shows 
the fraction of events that overlap between the modelled and ENTSO-E 
lowest 10% z-score. Statistical extremes in ENTSO-E PV capacity factors 
are not always captured well by the model. This can mostly be explained 
by the variations in ENTSO-E data. Countries with a poor capture of 
extremes correspond with countries that have jumps in reported yearly- 
installed capacities, resulting in large year-to-year variations in capacity 
factors (see Supplementary Figure E− 2). The model selects statistical 
extremes in onshore and offshore wind well, whereas the run-of-river 
and reservoir hydropower events do not correspond well. This is ex-
pected, as the exact date of the events are compared, and both the hy-
dropower and run-of-river production are subject to shifts in timeseries 
between modelled and ENTSO-E data as explained above. 

4.2.1. Case study validation: meteorological conditions during low 
production and high demand in Sweden and Spain 

To get more insight in what drives (the difference between) modelled 
and ENTSO-E events, we present a case study into the meteorological 
conditions during high residual-loads. Fig. 15 compares the top-7 
modelled events with highest national 7-day residual-load against the 
ENTSO-E events. The events are selected so they have no overlap and be 
a minimum of 7 days apart. Small shifts in time of events can be 
explained by time lags in hydropower production. Although events do 
not take place at exactly the same day, they can be the result of similar 
meteorological drivers. 

For Sweden, all events take place in winter, corresponding with their 
high demand (Fig. 10) and low hydropower inflow (Fig. 13) in winter. 
Both in the model and the ENTSO-E composites we observe a ridge of 
high pressure from West to central Europe during events, bringing 
relatively cold northerly winds to Northern-Europe (Fig. 16). However, 
the ridge is located a bit more north and extends to Eastern-Europe in the 
model-based composites. The high residual-load in Sweden is mostly 
driven by high demand as a result of low temperature anomalies. 

For Spain, Fig. 15 shows that three of the high-residual events in the 
ENTSO-E data take place in summer, when high temperatures increase 
the cooling demand. The model does not capture these summer events 
well: the top 20 events predicted by the model contains only 3 summer 
events. For fair comparison of events in the composite, we limit ENTSO- 

Fig. 11. Correlation between modelled and ENTSO-E data [28], presented per technology type. Green circles indicate a correlation close to 1, red circles indicate r is 
close to 0. Blank spaces indicate that there is no ENTSO-E and/or modelled data for these technologies in associated countries. For countries that show a correlation 
for reservoir hydropower production but not for reservoir inflow, ENTSO-E does not have reservoir storage values. The size of the circle gives an indication of the 
contribution of that technology to national electricity demand. For onshore/offshore wind and solar r is based on daily values, for run-of-river/reservoir hydropower 
and the combined technologies the r values are based on weekly means. The correlation of reservoir inflow is added as a reference for hydropower reser-
voir production. 
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E event selection to the winter season (NDJFMA) (Fig. 16). In both the 
model and ENTSO-E winter event composite, we observe a strong 
pressure gradient over Northern Europe that causes low temperatures, 
large negative wind anomalies and moderately positive radiation 

anomalies. Additionally, along the southern border of France and in the 
North West of Spain, where many of the hydropower plants are located, 
we observe negative run-off anomalies [42]. analyzed the meteorolog-
ical conditions driving the difference between demand and PV and wind 

Fig. 12. Timeseries of model (orange lines) and ENTSO-E [28] derived (blue lines) renewable capacity factors for countries with relatively low (left), median 
(middle) and high (right) correlation values per source of energy. Plot shows a section of the timeseries from 2017 to 2022, correlation coefficient (r) p-value (p), and 
root mean squared error (RMSE) are computed for the full dataset from 2015 to 2022. Statistical metrics for wind, offshore wind and solar are based on daily values, 
and for hydropower run-of-river and reservoirs on weekly means. Thin lines represent daily values and thick lines weekly means. The reservoir inflow timeseries (top 
row) are added as a reference for the countries with low/median/high correlation values for hydropower reservoir production. 
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production for Spain based on ENTSO-E data, and found mostly (9 out of 
10) winter events. The inclusion of hydropower generation partially 
shifts the extremes to summer, when short periods of meteorological 
drought can result in low hydropower availability due to the small 
storage capacities of Spain’s reservoirs. For the composites of the top 7 
Spanish summer events for both the ENTSO-E and model data, see 

Supplementary Figure E− 7. 

5. Limitations of the analyses 

By having a strong focus on correlations over rRMSE, the evaluation 
procedure might have missed biases in the model. Calibrating our results 

Fig. 13. Hydropower inflow and dispatch in energy units for Sweden (top) and Spain (bottom) for the years 2015–2022. With in blue the ENTSO-E derived data [28] 
and in orange the model results. 

Fig. 14. Overlap between selection of events with lowest relative anomalous energy production from ENTSO-E derived data [28] and modelled elec-
tricity production. 

Fig. 15. Timeseries of 7-day rolling sum of difference between electricity demand and renewable production for Sweden and Spain from 2015 to 2022, with the 
markers presenting the top-7 (once-in-a-year) events which are a minimum of 14 days apart. Orange line/markers shows modelled time series, blue line/markers 
ENTSO-E data [28]. 
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Fig. 16. Composites of anomalies for the top 7 high residual-load winter (NDJFMA) events in Spain (left) and Sweden (right) that last 7 days, with a minimum of 14 days apart 
in the period of 2015-2021. Anomalies are relative to the 30-year climate (1991–2021). Composites for both ENTSO-E [28] and modelled events. With mean anomalies during 
the period of the event from top to bottom: temperature, windspeed, solar radiation, and the mean runoff in the 3 months before the event. 
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to the ENTSO-E data would significantly reduce the rRMSEs, however, 
as mentioned before, the yearly installed capacities by ENTSO-E fluc-
tuate a lot, making the validation capacity factors unreliable. We 
observed sudden jumps, unrealistically low-capacity factors and capac-
ity factors above 1 (more electricity produced than the installed capacity 
allows for) in the ENTSO-E data. 

The hydropower dispatch optimization is sensitive to installed 
reservoir capacities. The national hydropower reservoir capacities were 
determined from multiple optimization runs for which the reservoir 
capacity that lead to the highest correlation was selected. Especially for 
the countries with low correlations, this yields unreliable results. A next 
step could be to validate those results with literature. Additionally, the 
modelled dispatch is sensitive to the relative deviation difference vari-
able that we introduce to the dispatch optimization (Fig. 5). Currently, 
this variable is given a randomly chosen weight of 1 for all countries, but 
making the weight of this variable country specific might result in more 
accurate dispatch patterns. 

Also, we approximated flow delays by applying the same recession 
coefficient to all basins in Europe. Specifying this value per basin will 
result in better timed summer/winter peaks for reservoir and run-of- 
river hydropower production. 

In this study we only considered the impact of meteorological vari-
ability on the production of renewable electricity. However, the effi-
ciency of thermal power plants also has a significant dependence on 
variables such as air temperature, water temperature and river levels 
[43]. A next step could be to include the reduced efficiencies or shut-
downs of these power plants due to lack of cooling water availability in 
the modeling framework to get better insight in the compound events 
that can occur. 

A common problem with extreme impact events is that historical 
data on them is scarce. For the validation of this framework, we used the 
6 available years of production and load data from the ENTSO-E plat-
form. Consequently, validated how this framework captures the relation 
between meteorological conditions and energy production and demand 
for different regions in Europe for the past 6 years, but cannot validate 
its performance on more extreme (for example 1-in-20 year) events. 

The intended use of the framework is scenario analysis of extreme 
(compound) events with large ensemble climate data, for strategic sys-
tem design. To maintain reasonable computational times, sacrifices have 
been made in the spatial-temporal resolution. By using daily data, the 
implicit assumption of the framework is that there is enough storage 
capacity to balance the intraday variability. However, the use of daily 
mean values makes the framework unsuitable for the analysis of short- 
term extremes or to tackle operational challenges that come with 
meteorological variability. 

Finally, the performance of the modeling framework depends on the 
accuracy of the input data. This validation was performed with rean-
alysis ERA5 and ERA5-land as meteorological input data. As reanalysis is 
part model-output, the data are potentially subject to biases. Using 
gridded observation data could improve the validation. 

6. Conclusions 

In this paper we have proposed and validated a new modeling 
framework to estimate renewable electricity production and demand 
from meteorological data with novel methods for the computation of 
hydropower production and electricity demand on days with extreme 
temperatures. The focus of the analyses was Europe; Spain and Sweden 
were highlighted in case studies. 

Overall, our modeling approach characterizing reservoir hydro-
power operating procedures has yielded surprisingly accurate results for 
seasonal and interannual variability in most countries. However, for 
Montenegro, Bosnia and Herzegovina and Switzerland, the model does 
not capture the operating procedure, resulting in low model correlation 
with observation values. We found that the run-of-river hydropower 
module performs well for most (18/21) countries on modeling seasonal 

and interannual variability, but captures daily variability less well. The 
already established PV solar and wind models that we used yielded good 
results with correlations >0.87 for all countries. 

Additionally, we performed a more detailed validation by selecting 
events with high residual-load for Sweden and Spain by comparing the 
meteorological conditions during the selected events. Although the 
exact dates of the modelled events and ENTSO-E events do not corre-
spond, this case study to analyze meteorological drivers of the events 
yielded similar results between the two. This gives confidence in the 
application of the modeling framework in studies to identify driving 
mechanisms of (future changes in) extreme events in the European 
power system. 
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