412 research outputs found

    Coi vecchi padri in casa…ed il focolare spento… Noi donne andammo sui campi e nelle ‘industrie’… per un tozzo di pane

    Get PDF
    This essay studies the work of women on the other side of the front. By studying the papers of judicial and administrative records kept in the Record Office of Lecce, the trials report the female manifestations of protest in various towns of Terra d’Otranto: women condemned for defending the poor conditions in which they were forced to live. They were the great protagonists in the fight against hunger and lack of bread, which damaged the health of their sons and their old father

    1917, l’anno “impossibile”

    Get PDF
    The agitations of the period of the war were a protest with an anti-militarist character which marked the beginning of a popular insurrection that involved, for a week, all the regions of Italy. The period was characterized by a profound unease which had both economic and social causes: in 1914-15 there were many clashes between citizens in favor of intervention and those against it. During the years of the war the spontaneous protests involved almost exclusively women and children. The defining aspect of the protest was a moral revolt against injustice: in the countryside against the local authorities, in the towns against the government, speculators and shopkeepers and against all those who did not seem to be paying the price of the war. The length of the war produced a greater awareness of rights: in relation to sacrifices, the people demanded a broader social equality and the end of privileg

    Magnetic long-range order induced by quantum relaxation in single-molecule magnets

    Get PDF
    Can magnetic interactions between single-molecule magnets (SMMs) in a crystal establish long-range magnetic order at low temperatures deep in the quantum regime, where the only electron spin-fluctuations are due to incoherent magnetic quantum tunneling (MQT)? Put inversely: can MQT provide the temperature dependent fluctuations needed to destroy the ordered state above some finite Tc, although it should basically itself be a T-independent process? Our experiments on two novel Mn4 SMMs provide a positive answer to the above, showing at the same time that MQT in the SMMs has to involve spin-lattice coupling at a relaxation rate equaling that predicted and observed recently for nuclear spin-mediated quantum relaxation.Comment: 4 pages, 3 figure

    Dark-Bright Soliton Bound States in a Microresonator

    Get PDF
    The recent discovery of dissipative Kerr solitons in microresonators has facilitated the development of fully coherent, chip-scale frequency combs. In addition, dark soliton pulses have been observed in microresonators in the normal dispersion regime. Here, we report bound states of mutually trapped dark-bright soliton pairs in a microresonator. The soliton pairs are generated seeding two modes with opposite dispersion but with similar group velocities. One laser operating in the anomalous dispersion regime generates a bright soliton microcomb, while the other laser in the normal dispersion regime creates a dark soliton via Kerr-induced cross-phase modulation with the bright soliton. Numerical simulations agree well with experimental results and reveal a novel mechanism to generate dark soliton pulses. The trapping of dark and bright solitons can lead to light states with the intriguing property of constant output power while spectrally resembling a frequency comb. These results can be of interest for telecommunication systems, frequency comb applications, ultrafast optics and soliton states in atomic physics

    Universal symmetry-breaking dynamics for the Kerr interaction of counterpropagating light in dielectric ring resonators

    Get PDF
    Spontaneous symmetry breaking is an important concept in many areas of physics. A fundamentally simple symmetry-breaking mechanism in electrodynamics occurs between counterpropagating electromagnetic waves in ring resonators, mediated by the Kerr nonlinearity. The interaction of counterpropagating light in bidirectionally pumped microresonators finds application in the realization of optical nonreciprocity (for optical diodes), studies of PT-symmetric systems, and the generation of counterpropagating solitons. Here, we present comprehensive analytical and dynamical models for the nonlinear Kerr interaction of counterpropagating light in a dielectric ring resonator. In particular, we study discontinuous behavior in the onset of spontaneous symmetry breaking, indicating divergent sensitivity to small external perturbations. These results can be applied to realize, for example, highly sensitive near-field or rotation sensors. We then generalize to a time-dependent model, which predicts different types of dynamical behavior, including oscillatory regimes that could enable Kerr-nonlinearity-driven all-optical oscillators. The physics of our model can be applied to other systems featuring Kerr-type interaction between two distinct modes, such as for light of opposite circular polarization in nonlinear resonators, which are commonly described by coupled Lugiato-Lefever equations

    Ramsar Wetlands of International Importance–improving conservation outcomes

    Get PDF
    The Ramsar Convention (or the Convention on Wetlands), signed in 1971, was one of the first international conservation agreements, promoting global wise use of wetlands. It has three primary objectives: national designation and management of wetlands of international importance; general wise use of wetlands; and international cooperation. We examined lessons learnt for improving wetland conservation after Ramsar’s nearly five decades of operation. The number of wetlands in the Ramsar Site Network has grown over time (2,391 Ramsar Sites, 2.5 million km2, as at 2020-06-09) but unevenly around the world, with decreasing rate of growth in recent decades. Ramsar Sites are concentrated in countries with a high Gross Domestic Product and human pressure (e.g., western Europe) but, in contrast, Ramsar Sites with the largest wetland extent are in central-west Africa and South America. We identified three key challenges for improving effectiveness of the Ramsar Site Network: increasing number of sites and wetland area, improved representation (functional, geographical and biological); and effective management and reporting. Increasing the number of sites and area in the Ramsar network could benefit from targets, implemented at national scales. Knowledge of representativeness is inadequate, requiring analyses of functional ecotypes, geographical and biological representativeness. Finally, most countries have inadequate management planning and reporting on the ecological character of their Ramsar Sites, requiring more focused attention on a vision and objectives, with regular reporting of key indicators to guide management. There are increasing opportunities to rigorously track ecological character, utilizing new tools and available indicators (e.g., remote sensing). It is critical that the world protect its wetlands, with an effective Ramsar Convention or the Convention on Wetlands at the core

    A Kerr Polarization Controller

    Get PDF
    Kerr-effect-induced changes of the polarization state of light are well known in pulsed laser systems. An example is nonlinear polarization rotation, which is critical to the operation of many types of mode-locked lasers. Here, we demonstrate that the Kerr effect in a high-finesse Fabry-Pérot resonator can be utilized to control the polarization of a continuous wave laser. It is shown that a linearly-polarized input field is converted into a left- or right-circularly-polarized field, controlled via the optical power. The observations are explained by Kerr-nonlinearity induced symmetry breaking, which splits the resonance frequencies of degenerate modes with opposite polarization handedness in an otherwise symmetric resonator. The all-optical polarization control is demonstrated at threshold powers down to 7 mW. The physical principle of such Kerr effect-based polarization controllers is generic to high-Q Kerr-nonlinear resonators and could also be implemented in photonic integrated circuits. Beyond polarization control, the spontaneous symmetry breaking of polarization states could be used for polarization filters or highly sensitive polarization sensors when operated close to the symmetry-breaking point
    corecore