18 research outputs found

    Measuring the vertical profile of leaf wetness in a forest canopy

    Get PDF
    Plant canopies are wet for substantial amounts of time and this influences physiological performance and fluxes of energy, carbon and water at the ecosystem level. Leaf wetness sensors enable us to quantify the duration of leaf wetness and spatially map this to canopy structure. However, manually analysing leaf wetness data from plot-level experiments can be time-consuming, and requires a degree of subjective judgement in delineating wetness events which can lead to inconsistencies in the analysis. Here we: • Describe how to set up an array of leaf wetness sensors (Phytos 31, Meter) enabling the measurement of leaf wetness duration through the profile of a forest canopy, • Present a method and R script to objectively identify and distinguish periods of rain and dew from the output of leaf wetness sensors, • Provide a criteria for separating the leaf wetness sensor output into dew and rain events which may form a reference standard, or be modified for use, in future studies

    Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    Get PDF
    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ε, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux.Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted

    Plasticity in leaf-level water relations of tropical rainforest trees in response to experimental drought

    Get PDF
    Summary The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera. The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues. The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll. These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change

    Stand dynamics modulate water cycling and mortality risk in droughted tropical forest

    Get PDF
    Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long-term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought-related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.Peer reviewe

    After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration

    Get PDF
    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity.</p

    Exciton effects in perovskite nanocrystals

    No full text
    Nanocrystals (NCs) of perovskite materials have recently attracted great research interest because of their outstanding properties for optoelectronic applications, as evidenced by the increasing number of publications on laboratory scale devices. However, in order to achieve the commercial realisation of these devices, an in-depth understanding of the charge dynamics and photo-physics in these novel materials is required. These dynamics are affected by material composition but also by their size and morphology due to quantum confinement effects. Advances in synthesis methods have allowed nanostructures to be produced with enhanced confinement and structural stability, enhancing the efficiency of energy funnelling and radiative recombination and so resulting in more efficient light emitting devices. In addition, photovoltaics could greatly benefit from the exploitation of these materials not only through their deployment in tandem cell architectures but from the use of multiple exciton generation in these NCs. These systems also offer the opportunity to study quantum effects relating to interactions of excited states within and between NCs. Properties and behaviour that includes an enhanced Rashba effect, superfluorescence, polariton lasing, Rydberg exciton polariton condensates, and antibunched single photon emission have been observed in a single metal halide perovskite NC. The further study of these in NC systems will shed new light on the fundamental nature of their excited states, their control and exploitation. In this perspective, we give an overview of these effects and provide an outlook for the future of perovskite NCs and their devices.</p

    Stacking fault-associated polarised surface-emitted photoluminescence from zincblende InGaN/GaN quantum wells

    Get PDF
    Zincblende InGaN/GaN quantum wells offer a potential improvement to the efficiency of green light emission by removing the strong electric fields present in similar structures. However, a high density of stacking faults may have an impact on the recombination in these systems. In this work, scanning transmission electron microscopy and energy-dispersive x-ray measurements demonstrate that one-dimensional nanostructures form due to indium segregation adjacent to stacking faults. In photoluminescence experiments, these structures emit visible light, which is optically polarized up to 86% at 10 K and up to 75% at room temperature. The emission redshifts and broadens as the well width increases from 2 nm to 8 nm. Photoluminescence excitation measurements indicate that carriers are captured by these structures from the rest of the quantum wells and recombine to emit light polarized along the length of these nanostructures
    corecore