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Abstract

Transpiration from the Amazon rainforest generates an essential water source at a

global and local scale. However, changes in rainforest function with climate change

can disrupt this process, causing significant reductions in precipitation across Ama-

zonia, and potentially at a global scale. We report the only study of forest transpi-

ration following a long-term (>10 year) experimental drought treatment in

Amazonian forest. After 15 years of receiving half the normal rainfall, drought-

related tree mortality caused total forest transpiration to decrease by 30%. How-

ever, the surviving droughted trees maintained or increased transpiration because

of reduced competition for water and increased light availability, which is consis-

tent with increased growth rates. Consequently, the amount of water supplied as

rainfall reaching the soil and directly recycled as transpiration increased to 100%.

This value was 25% greater than for adjacent nondroughted forest. If these

drought conditions were accompanied by a modest increase in temperature (e.g.,

1.5°C), water demand would exceed supply, making the forest more prone to

increased tree mortality.
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1 | INTRODUCTION

In South America, 25%–35% of precipitation is estimated to be

recycled via repeated precipitation-evaporation processes as air

masses travel west over Amazonian rainforest (Eltahir & Bras,

1994; Zemp et al., 2014). Up to 70% of the water resources of the

extensive Rio de La Plata basin are dependent on evapotranspira-

tion from Amazonia (van der Ent, Savenije, Schaefli & Steele-

Dunne, 2010). Changes in land cover properties in the Amazon

basin can disrupt this recycling process, potentially causing signifi-

cant reductions in precipitation both in Amazonia and regionally to

the La Plata basin (Spracklen, Arnold & Taylor, 2012), with large

economic consequences (Marengo, Alves & Torres, 2016). However,

how tropical forest transpiration will respond to future drought and

temperature change remains uncertain. Despite the climatological

importance of large gross fluxes of transpiration from the world’s

tropical rainforests (Lawrence & Vandecar, 2015; Spracklen et al.,

2012), predictions of how water recycling from tropical rainforest

may change with climate, in particular climate extremes, are poorly

constrained by data for this biome (Kume et al., 2011; Restrepo-

Coupe et al., 2013). The frequency and intensity of subregional

extremes in precipitation and temperature are predicted to increase

this century, leading to increased drought at seasonal, interannual

and decadal timescales (Duffy, Brando, Asner & Field, 2015; Fu

et al., 2013). How water use by forests will change remains

unclear. Tropical rainforests generally transpire 30%–70% of incom-

ing rainfall (Kumagai, Kanamori, & Chappell, 2016), but at their cli-

matic margins, where annual rainfall is 1,200–1,500 mm/year

(Zelazowski, Malhi, Huntingford, Sitch & Fisher, 2011), this value

rises to above 90% placing a cap on regional moisture supply, deep

soil recharge and river run-off (van der Ent et al., 2010; Kume

et al., 2011).

Processes ranging in scale from plant tissue to ecosystem can

control how the proportion of rainfall that is recycled changes in

response to drought. For individual trees, long-term responses may

include physiological changes in water use efficiency, turgor regula-

tion and the sensitivity of xylem hydraulics to cavitation, structural

acclimation in new root growth (Eller, Lima & Oliveira, 2016; Oli-

veira, Dawson, Burgess & Nepstad, 2005), or changes in leaf to sap-

wood or root area ratios (Wolfe, Sperry & Kursar, 2016). These

responses can help regulate gross water demand by the canopy, but

ultimately it will be the demographic regulation of stand density via

competition for water that will determine whole-system water use

and stability (Meir, Wood et al., 2015).

Measurements of sapflux (Js) are a powerful method to under-

stand the annual and seasonal shifts in forest water use, including

the relationship of transpiration to environmental variables (Eller,

Burgess & Oliveira, 2015; Fisher et al., 2007; Poyatos, Aguade,

Galiano, Mencuccini & Martinez-Vilalta, 2013) and the physiological

plasticity associated with stomatal regulation in trees (Martinez-

Vilalta, Poyatos, Aguade, Retana & Mencuccini, 2014). There are,

however, relatively few reports of continuous sapflux (Js)

measurements in tropical rainforest (Fisher et al., 2007; Granier,

Biron, Breda, Pontailler & Saugier, 1996), none of which have been

conducted following long-term drought (>5 years). Studies during

long-term drought are essential to establish whether tropical trees

can adjust their water use to drier soils over timescales approaching

those of possible changes in climate. By imposing a reduction in soil

water availability, large scale through-fall exclusion (TFE) provides a

unique way to examine the processes underlying long-term

responses to increased deficit in soil water potential, and to examine

how water use and stand-scale water cycling are altered.

Here, we quantify the effects of a prolonged experimental soil

drought on water use as a proportion of available rainfall by an old-

growth tropical rainforest in eastern Amazonia. We use the world’s

only long-running tropical forest TFE experiment, at the Caxiuan~a

National Forest Reserve, Par�a State, Brazil (da Costa et al., 2010;

Meir, Mencuccini & Dewar, 2015; Rowland, Lobo-do-Vale et al.,

2015), to compare how transpiration and through-fall recycling (the

percentage of canopy through-fall transpired by the forest) are

altered between a normal forest and a drought-treated forest, with

the latter having experienced a 50% TFE treatment since 2002. We

previously reported (Rowland, da Costa et al., 2015) the loss of

about 40% biomass after 14 years since the TFE started. As mea-

surements of stand scale transpiration were also available for the

years 2002–2003, i.e., at the start of the experiment, but before the

large waves of mortality occurred, we are also able to determine

how total water use and its partitioning changed in response to

changes in stand density and structure.

2 | MATERIALS AND METHODS

2.1 | Site

The site is a long-term TFE experiment located at the Caxiuan~a

National Forest Reserve in the eastern Amazon (1°430S. 51°27’W).

The site has a mean rainfall of 2,000–2,500 mm/year, a pronounced

dry season between June and November (rainfall <100 mm/month)

and is situated on terra firme forest, with yellow oxisol soils (Ruivo

and Cuhha, 2003).

The TFE experiment consists of two 1 ha plots located on old-

growth tropical forest. The treatment plot (TFE) has been covered

with plastic panels and guttering 1–2 m in height since 2002. This

structure excludes 50% of the incoming canopy through-fall. A con-

trol plot, on which no rainfall exclusion has taken place, is located

<50 m from the TFE. For further details on the experimental design

and results see: da Costa et al. (2010), Meir, Mencuccini et al.

(2015), Meir, Wood et al. (2015), Rowland, da Costa et al. (2015)

and Rowland, Lobo-do-Vale et al. (2015). Following 14 years of con-

tinuous drought the plot has experienced a 40% loss in biomass

(equivalent to 100 Mg C/ha), this loss generated a substantial reduc-

tion in basal and thus sapwood area, a reduction in leaf area index

(LAI) and an increase in light interception in the lower canopy (see

Rowland, da Costa et al., 2015).
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2.2 | Meteorological and soil moisture data

All meteorological variables were obtained from a weather station sit-

uated at the top of a 40 m tower located in the control forest. During

the period of 2014–2016 air temperature, relative humidity, solar radi-

ation and rainfall were monitored half hourly using HC2S3 (Campbell

Scientific, Logan, UT, USA), CM3 sensors (Kipp and Zonen, Delft, The

Netherlands), and a tipping bucket rain gauge (TE525MM; Campbell

Scientific), respectively. Vapour pressure deficit (VPD) was calculated

from temperature and relative humidity. Soil access pits are located in

the control and TFE plots. In each soil access pit volumetric soil water

content sensors (CS616; Campbell Scientific) have been placed at

depths of 0, 0.5, 1, 2.5 and 4 m, to monitor soil moisture every hour

(cf. Fisher et al., 2007; for full methodology). Here, we use the data

collected during 2014–2016, the period during which sapflux (Js) data

were collected. Hourly relative extractable water (REW) aggregated

across the first two metres was calculated using the soil moisture data

and following the methodology in Meir, Mencuccini et al. (2015) and

Meir, Wood et al. (2015). Daily values were calculated using a 30 day

running mean so that the seasonal trend of REW was captured, rather

than daily or hourly spikes in soil water concentrations.

2.3 | Js data

Js was measured using the heat balance method (Cermak, Deml &

Penka, 1973; Cermak, Kucera & Nadezhdina, 2004; Kucera, Cermak

& Penka, 1977) and previously used at the site (Fisher et al., 2007).

EMS51 sensors (Environmental monitoring systems; http://www.e

msbrno.cz), were used on all trees. The installation process and func-

tioning of these sensors are described in the Supporting information.

Between November 2014 and December 2016 the EMS51 sensors

were installed on 16 trees in the control plot and 13 trees in the

TFE plot. The start date of sampling varied among trees (see

Table S1). Trees for which sensors were installed in 2016 (seven on

the control and three on the TFE) were excluded from the upscaling

analysis (see below) on the basis that they had an insufficient data

time series. To ensure we could upscale with confidence, sensors

were strategically placed across trees with a range of diameters at

breast height (DBH) values (15–56 cm) and on common species in

the control and TFE plots known to be both sensitive and resistant

to drought stress (see Table S1).

Values of Js obtained from the EMS51 sensors were always off-

set from zero as a constant part of the heat loss from the heated

electrodes is conducted into the xylem tissue. To remove this effect

the data were baselined, as performed in other standard sap flux

processing protocols (e.g., Poyatos et al., 2013). To baseline the data,

the minimum value of the Js for each night was subtracted from all

values for the subsequent day, provided evaporative demand was

low (preventing night-time Js, VPD < 0.15 kPa). If night-time VPD

>0.15 kPa, a minimum value was linearly interpolated from the base-

line values from surrounding days using the approx function in R (R

Core team 2014).

2.4 | Gapfilling Js data

Gaps in the data varied from 0% to 63% (average of 8%) and were

generally caused by power failure or broken sensors. Gaps in the

hourly baselined Js data since sensor installation were gap-filled

using an autoregressive (AR1) style model, accounting for the auto-

correlation in the data. Firstly, the boxcox function in R was used

to determine the lambda value to power transform the Js data of

each tree (lambda range 0.46–0.84). Secondly, a linear regression

was performed between the power-transformed Js, the three inde-

pendent variables VPD, radiation, REW and six vectors of the

power-transformed Js preceding the dependent variable by 1–6 hr.

We correlated each Js data point with the six hourly data points

preceding it, as this was the number required to remove the auto-

correlation effect across all trees (determined using ACF plots).

Data from all but one of the trees were gap filled with a model

which had an r2 > .90; the mean model fit was r2 = .93 � 0.07

(SEM), demonstrating a very good fit between modelled and mea-

sured Js.

2.5 | Statistical analysis

All statistical analyses of Js data were conducted within R 3.0.2 (R

Core Team35) and all errors are shown as standard deviation. To

compare diurnal responses between plots and seasons an average

diurnal Js pattern was calculated for the control and TFE plots, dur-

ing peak wet and dry season. Peak wet and dry season were deter-

mined as the 2 months with the highest (October and November)

and lowest (March and April) monthly average VPD. Multiple linear

regressions between mean daytime transpiration rate per tree, per

plot (calculated as the average Js from all trees per plot) and envi-

ronmental conditions were fitted to estimate the most important

environmental controls on daily Js. Initially VPD or temperature

with radiation, and REW were included in the model and sequen-

tially nonsignificant variables were excluded in stepwise linear

regressions determined by Akaike’s information criterion. For the

TFE the use of a single model across both wet and dry season was

compared to the model fit of using separate wet and dry season

models (considering wet season as Feb-Jul and dry season as Aug-

Jan). Two models were most effective on the TFE (see Results) and

the same seasonal modelling approach was followed with the con-

trol plot. The relaimpo package in R (Gr€omping, 2006) was used to

calculate the proportion of the explained variance which was

accounted for by each variable retained in each of the final

models.

Seasonal relationships of VPD to Js were created by fitting a sig-

moidal function using the SSllogis function in R through average

hourly Js data for the trees on the control and TFE, binned by VPD

classes. Separate relationships were created for peak wet and dry

season and the data were normalized using the maximum average Js,

across plots and seasons, to make the relationships comparable

between plots and seasons.
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2.6 | Scaling Js to calculate plot-scale transpiration
and its temperature sensitivity

Scaling Js from the measured trees for the measured periods to plot

level at the yearly time scale involved the following steps to properly

propagate the sources of uncertainty deriving from tree-to-tree vari-

ability in Js as well as uncertainties in the scaling of Js with tree

DBH.

To obtain a scaling relationship between tree Js and DBH, we

regressed Js data from April to May 2015 (i.e., peak of wet season

and when tree DBH were measured) against DBH. This allowed us

to additionally included data obtained by Fisher et al. (2007); also

collected at peak wet season); all data were obtained using the same

measurement method (Environmental monitoring systems; http://

www.emsbrno.cz). There was a linear relationship between DBH and

mean daytime Js, with an r2 of .39 and p < .01 (Fig. S1). This scaling

relationship was assumed on the control and TFE plot based on simi-

larity of Js values across the two plots during the wet season (see

Results section), and it was applied to the DBH of all trees on both

plots measured in 2015 (see Rowland, da Costa et al., 2015, for fur-

ther details). To account for the uncertainty in the parameters of this

relationship, 1,000 parameter estimates were randomly generated

from the model using the covariance matrix for the intercept and

slope. These parameters were used to create 1,000 estimates of

average daytime April and May Js for all trees >10 cm DBH on both

plots. The average daytime Js values for each tree, for each of the

1,000 parameter combinations, were then summed to give 1,000

plot-scale estimates of transpiration for April and May of the mea-

surement years, accounting for the error on our DBH to Js relation-

ship. Following this, a second procedure was employed using similar

principles to propagate uncertainty from 1,000 estimates of the

measured April-May data to the whole year and across the two

plots. We employed the best-fit multilinear model per plot, which

described how mean daily Js varies with climate variables (see

above). Because of the strong autocorrelation between VPD, RH and

air temperature, only the best regressor among these three was

finally employed in the upscaling procedure (see Supporting informa-

tion for further details). Besides the two estimates for the Control

and TFE plots, a third estimate of plot-scale transpiration was gener-

ated by applying the estimated Js from the multiple regression mod-

els of Control to the standing biomass of TFE. This estimate gives

downscaled values of transpiration on Control with the effect of the

loss in basal area on the TFE imposed on Control, and the changes

in transpiration rates with environmental variables remaining equal

to those on Control.

To estimate the effects of increasing temperatures on plot scale

transpiration, the 1,000 model coefficients from above were rerun

with temperature, relative humidity and VPD altered according to a

1.5, 2, 3, 4 and 5°C increases in mean air temperature. We empha-

size that the purpose of these temperature rise scenarios is not for

future prediction, but to estimate the effects of long-term drought

on the sensitivity of the forest to other changes in climate. The scal-

ing procedure was then repeated as above. The transpiration rates

at each temperature level were then compared to the canopy

through-fall received by each plot assuming a canopy storage term

of 21.5% on the control plot, as measured at the site in 2008 (Oli-

veira, Da Costa, Da Costa, Sousa & Braga, 2008; and within the

ranges of canopy storage terms measured across other Amazonian

forests (Czikowsky & Fitzjarrald, 2009)). On the TFE we scaled down

this estimate of canopy storage to 18.1% (Oliveira et al., 2008), in

proportion with the leaf area index measured in TFE relative to Con-

trol (See Rowland, da Costa et al., 2015), assuming that canopy

interception decreases proportionally with leaf area. The analysis

was also repeated using a canopy storage term of 12% (Czikowsky

& Fitzjarrald, 2009) to account for uncertainty in throughfall resulting

from differences in LAI across plots (see sensitivity to canopy inter-

ception term section). Also we would expect it to provide a lower

limit to the sensitivity in TFE because of fewer interception surfaces

in TFE (i.e., lower LAI and biomass; Rowland, da Costa et al., 2015).

However, due to an inability to accurately estimate LAI on a per tree

basis, which may have changed over time due to the treatment

effect and due to the likely increase in atmospheric coupling on the

drought relative to the control plot due to increasing mortality over

time, we were not able to accurately scale sapflux according to leaf

area to estimate differences in leaf level conductance between the

plots (e.g., Eller et al., 2015).

3 | RESULTS

During the study period (November 2014–December 2016) there

were strong seasonal changes in relative extractable water (REW), pre-

cipitation and moderate seasonal changes in vapour pressure deficit

(VPD) at our study site (Figure 1). An El Ni~no event took place across

Amazonia in 2015–2016, but had limited distinctive influence on cli-

mate drivers at our site, which is demonstrated by the El Ni~no year not

creating substantial climate anomalies relative to previous years

(Fig. S2). Therefore, considering 2015 to represent standard climato-

logical conditions, we find average transpiration is 1,389 � 279 (SD)

mm/year on the control forest plot. On the TFE forest plot a transpira-

tion rate of 964 � 245 (SD) mm/year in response to the 50% experi-

mental reduction in throughfall was observed; this represents a 30%

decline in transpiration relative to the control. Transpiration therefore

comprised 75% (SD range = 60%–90%) of canopy through-fall on the

control, compared to 101% (SD range = 75%–127%) on the TFE (Fig-

ure 2). These estimates of through-fall recycling at Caxiuan~a are similar

to the mean values previously quantified at the start of the TFE treat-

ment for the years 2002–2003 using updated estimates for canopy

interception for the plots (59%–71% and 78%–103%, control and TFE,

respectively, Figure 2). These estimates are robust to assumptions

made regarding the magnitude of canopy rainfall interception as a pro-

portion of total rainfall and to differences in canopy storage caused by

different values of leaf area index across plots (see Table S2).

Relative to the control, we observed changes in the transpiration

rates of trees on the TFE (Figure 3). However, there was only a 5%

difference between 2015 transpiration on the TFE and the
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transpiration expected if estimates from the control were down-

scaled to reflect the 40% reduction in biomass and related basal area

which occurred between 2002 and 2015 (Figure 2). This small

reduction by low dry season transpiration was countered with higher

wet season transpiration on the TFE (Figure 3). Increased seasonality

in TFE transpiration meant that daytime Js was modelled more effec-

tively using a separate multiple regression model for dry (Aug-Jan)

and wet (Feb-Jul) season on the TFE (r2 dry = .60, r2 wet = .69, r2

whole year = .61, all p values < .01). Dry season variation in transpi-

ration on TFE was explained mostly by REW (44%) and radiation

(47%). During the wet season, radiation explained 60% of the vari-

ance, VPD 33% and REW 7%. On the control plot air temperature

(32%) and radiation (67%) controlled dry season transpiration

(r2 = .81) and radiation (65%) and VPD (35%) were the most impor-

tant for controlling wet season fluxes (r2 = .72).

The reduced dry season transpiration flux on the TFE (Figure 3)

was caused by substantially lower peak daytime (11 a.m.–4 p.m.)

fluxes in the dry season (Figure 4b) compared to the wet season. In

contrast, the control plot maintained higher Js throughout the day in

the dry season relative to the wet (Figure 4a), suggesting low REW

constrained Js during periods of high atmospheric demand on the

TFE. The REW constraint resulted in an altered relationship between

Js and VPD in the dry season on the TFE, contrasting with the wet

season relationship, which was similar to that observed on the con-

trol (Figure 5). However, this increased seasonality had a limited

effect on plot-scale reductions in transpiration relative to the effect

of the loss of biomass and related basal area and active sapwood

area (Figures 2 and 3).

Using the multivariate linear models which specified how Js var-

ied with environmental conditions on the control and TFE plots (see

F IGURE 1 Meteorological data for the Caxiuan~a site during the
sapflux measurement period. In panel (a), precipitation (mm/day) is
shown as grey bars alongside average daily relative extractable
water (REW) integrated across three metres soil depth for the
control plot continuous black line) and TFE plot (dashed grey line).
Panel (b) shows average daily air temperature (°C, grey line) and
average daily VPD (kPa, black line)

F IGURE 2 How transpiration per year
(red arrows), canopy through-fall per year
(blue arrows) and annual through-fall
recycling rate (% circular black arrows)
change on the control (a, c) and TFE
(indicated by panel structure b, d) plots
from 2002 to 2003 (a, b) to 2015 (c, d).
The diagram depicts the change in above
ground biomass and the shift in forest
structure which occurred during the full
experimental period because of tree
mortality on the TFE
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Methods), we explored how transpiration would vary on both plots

if an increase in mean temperature of 1.5–5°C and the resultant

increases in VPD were imposed, assuming all else remained equal.

The increase in absolute transpiration with a 5°C increase in temper-

ature was greater on the control than the TFE, but was proportion-

ally similar (20%, Figure 6a). However, the TFE would risk exceeding

the imposed canopy through-fall supply even at the lowest tempera-

ture rise tested (1.5°C, Figure 6a). In contrast, even with a 5°C rise

in temperature, the control forest only reaches a through-fall recy-

cling rate of 91% for transpiration, still below that of the TFE within

the current climate. In addition, both control and TFE recycle >100%

of the water they receive between July-December (dry season)

under current climate (Figure 6b), with this value increasing

substantially with a 5°C rise in temperature (Figure 6c). Under the

current climate, between July and October the TFE forest transpires

more than six times the precipitation it receives and this rises to

almost eight times with a 5°C rise in temperature, creating a sub-

stantially greater imbalance between transpiration and precipitation

(Figure 6b,c).

4 | DISCUSSION

Until now the long-term responses of water use in a tropical forest

exposed to soil drought stress have not been studied. With new sap-

flow data spanning a 2-year period we are able to demonstrate that

the 40% loss of forest biomass observed on the TFE (Rowland, da

Costa et al., 2015) resulted in a 30% reduction in total forest tran-

spiration. We are also able to demonstrate for the first time that the

surviving trees are able to maintain or increase their transpiration

rate on a per-tree basis, causing 100% of the available rainfall

received by the droughted forest to be used for transpiration. Fur-

thermore, we demonstrate that if such drought conditions were

combined with a mild temperature rise, further tree mortality would

be inevitable, as forest water demand would substantially exceed

supply over an annual and multiannual timescale.

Our estimates of transpiration rates and through-fall recycling

rates (Figure 2, Table S2) are consistent with previous measurements

and modelling at this old-growth rainforest site (Carswell et al.,

2002; Fisher et al., 2007). They suggest a remarkably constant water

flux partitioning over the 15 years of the experiment, despite a sub-

stantial shift in forest structure because of high mortality in the TFE-

treated plot. The increase in the recycling rate to 100% on the TFE

suggests that a high sensitivity by the trees to atmospheric demand

for water is maintained even following long-term drought. Our data

suggest that drought-induced mortality of the tallest trees changed

stand water use patterns, facilitating greater growth competition in

the lower canopy, thereby maintaining very high levels of through-

fall recycling on the TFE. This is consistent with the observation

(Rowland, da Costa et al., 2015) that small- and medium-sized trees

increased their growth rates after mortality of the taller trees, by

responding plastically to increased light availability in the lower

canopy. This hypothesis is also consistent with current hydraulic the-

ory, which suggests that trees will continue to compete for, and use

up, a limited water supply, provided the advantages accrued from

the related carbon gain exceeds the cost of hydraulic damage (Sperry

& Love, 2015; Wolf, Anderegg, & Pacala, 2016). Plastic reductions in

water use as REW declines from wet to dry season on the TFE are

likely to only partially alleviate the water stress (Figures 3 and 4),

which would be substantial during climate extremes, and would

impose increased tree mortality risk. The intense regrowth by small-

to-medium diameter trees (Rowland, da Costa et al., 2015) is there-

fore likely to be the primary driver maintaining through-fall recycling

at the high levels seen in 2002–2003.

Following the mortality of the largest trees, competitive release

of small-to-medium diameter trees considerably elevated wet season

F IGURE 3 Daily transpiration (mm/day) from December 2014 –
July 2016 for the control plot (black line), the TFE (dashed black
line), and the estimated transpiration flux from the control plot if its
values were downscaled to reflect only the effect of basal area loss
on the TFE plot (dashed grey line). Grey shaded area shows the SE
on the estimates calculated using a bootstrapping technique (see
Methods)

F IGURE 4 Average diurnal Js patterns normalized using seasonal
maxima per tree during peak wet (March and April, solid black line)
and peak dry season (October and November, solid grey line) for
trees on control (a), and TFE (b). The black dashed line shows the
peak wet minus the peak dry season response for each panel and
the grey shaded area shows the SE
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stem growth on the TFE (Rowland, da Costa et al., 2015). As transpi-

ration accompanies photosynthesis and responds to increased radia-

tion availability, it is possible that the TFE trees have acclimated,

with elevated water use in the wet season to maximize growth, and

restricted growth in the dry season (Figures 2 and 3), thus explaining

the increased seasonality in transpiration observed on the TFE (Fig-

ure 1). Our sample size prevents us from examining whether sap flux

from small-to-medium diameter trees increased relative to large

trees. Comparison of sap flux values and canopy through-fall in

2002/03 with those in 2015 provides indirect confirmation of similar

levels of competition for water following mortality-related release on

TFE. Yearly stand-scale sap flow values on the TFE were estimated

as 953 and 805 mm in 2002/03 vs. 945 mm in 2015 (Table S2).

Therefore, despite a 40% biomass reduction, water use remained

similar over time on a per unit ground area, but increased on a tree-

level basis on the TFE, due to having fewer trees per unit ground

area. However, we note that our LAI measurements estimate only

about a 12%–20% reduction in leaf area on the TFE relative to Con-

trol (see Rowland, da Costa et al., 2015), significantly lower than our

estimate of a 30% reduction in transpiration. Measurements of LAI

in complex multilayered canopies are notoriously challenging (Breda,

2003) and these difficulties may explain the discrepancy between

the two estimates.

A shift from radiation and air temperature controlling dry season

transpiration on the control plot, to REW and radiation controlling it

on the TFE suggests that trees on the TFE adjusted to limit water

use during the dry season when REW was low. The strong control-

ling influence of REW on dry season transpiration on the TFE, but

not the control plot suggests low REW restricts dry season transpira-

tion and is most likely linked to significant hydraulic stress as water

demand approaches or exceeds supply on seasonal time-scales (Fig-

ure 6). Relative to Control, the TFE forest maintains higher through-

fall recycling rates also in the wet season (January to June) when

precipitation levels are substantially elevated (Figure 6b,c), resulting

in a reduced capacity to recover from dry season water stress. Given

predicted changes in VPD, and thus leaf water potential, combined

with lower soil water potentials, under some future climate scenar-

ios, there is potential that trees could rapidly be pushed beyond

their species-specific hydraulic safety margins (the difference

between normallyoccurring minimum xylem pressures, and those

causing damage to xylem tissues and restricting water transport),

potentially causing xylem embolism (Sperry & Love, 2015; Sperry

et al., 2016) and/or leaf loss, with the ultimate risk of increased

drought-induced mortality. Furthermore, as total annual tropical for-

est water use approaches total soil water supply, the likelihood of

hydraulic damage occurring in the xylem becomes greater. This is

particularly the case for large canopy-top trees, which are exposed

to greater variability and extremes in VPD, high air temperatures,

and larger xylem tensions (Bennett, McDowell, Allen & Anderson-

Teixeira, 2015; McDowell & Allen, 2015), which together have been

hypothesized to lead to a series of processes causing drought-

induced mortality (Anderegg et al., 2016; McDowell & Allen, 2015;

F IGURE 5 Optimized sigmoidal
relationships between Js and VPD for trees
on the control (C, a & c) and TFE (b & d)
plot in peak dry and peak wet season. Js is
binned by VPD and normalized by max
hourly Js per year to make relationships
comparable across plots and season
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Mencuccini, Miniunno, Salmon, Martinez-Vilalta, & H€oltt€a, 2015;

Rowland, da Costa et al., 2015; Sperry et al., 2016; Wolfe et al.,

2016) .

In future climate scenarios, areas of tropical forest experiencing

drought stress are also likely to experience increases in temperature

well beyond the moderate levels of 1.5–2°C (Christensen et al., 2007;

Duffy et al., 2015; Fu et al., 2013; Sanderson, O’Neill & Tebaldi,

2016). Using a novel modelling approach, we demonstrate here that a

forest exposed to long-term drought is far more likely to have transpi-

ration demand exceed supply than a nondroughted forest (Figure 6).

This is driven mostly by transpiration rates exceeding precipitation

supply in the dry season by up to eight times in a droughted forest

simultaneously experiencing temperature-driven rises in VPD, as

would be expected during natural drought. This puts a very large strain

on soil water supply, which the nondroughted forest can easily buffer,

due to the higher overall wet season recharge of soil water from

higher precipitation. Without this recharge we demonstrate that even

a very moderate rise in temperature necessitates tree mortality to bal-

ance transpiration demand and soil water supply. Although a 50%

decline in canopy through-fall on a 10 year time-scale is unlikely

within current climate projections, reductions of up to 50% are pre-

dicted across parts Amazonia, in a range of recent climate scenario

analyses (Christensen et al., 2007; Duffy et al., 2015). This result thus

has strong implications for future climate change and carbon cycle

feedback predictions, as it suggests that tropical trees will maintain

substantial transpiration fluxes even in the face of drought and rising

VPD, and that the forest appears to maintain a similar water balance

through the process of tree mortality.

The overall picture emerging from these results is that compen-

sation processes acting at tissue, tree and stand level have main-

tained the high levels of through-fall recycling on the TFE-treated

forest over more than a decade. While high mortality tended to

reduce levels of competition for water, the mortality-related growth

release for small-to-medium sized trees tended to increase it.

F IGURE 6 The effect of increasing
temperature on annual transpiration fluxes
for control (C) and TFE (a), under current
temperature climate (T, year 2015 used)
and under the climate of this year + 1.5, 2,
3, 4, and 5°C, accounting for temperature-
driven changes in relative humidity and
vapour pressure deficit. Dashed lines (a)
indicate the rainfall reaching the forest
floor on control (black) and TFE (grey).
Rainfall reaching the forest floor is
estimated from rainfall minus a canopy
interception estimate of 21.5% (see
Methods). Panel (b) and (c) show the % of
seasonal through-fall recycled as
transpiration during the four quarters of
the year, under the current climate (b) and
with a 5°C increase in temperature (c).
Solid lines in (b) and (c) indicate 100%,
where transpiration exceeds the rainfall
reaching the soil. Error bars show the SD
across the 100 estimates made of each
scenario (see Methods)
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Additional processes, such as acclimation in leaf:sapwood and leaf:-

root ratios could also have affected competition for water. Estimated

through-fall recycling rates are already at approximately 100% on

the TFE after 15 years of reduced soil moisture availability, suggest-

ing that further demands for water can only be facilitated by addi-

tional tree mortality. As recycling rates are already >100% in the dry

season, even in undroughted forest, it suggests that rainforest trees

must rely on soil (and likely internal) water storage to carry them

through to the next wet season, potentially limiting their capacity to

maintain carbon uptake, whilst simultaneously also elevating their

mortality risk. If the effects of our 50% rainfall reduction, or indeed

a similar reduction in basal area imposed by widespread logging,

were to occur at a large scale, even the minimum increase in atmo-

spheric temperature which is now deemed unavoidable in the com-

ing century would imply severely reduced deep soil water recharge

and run-off, and increased tree mortality risk. The potential implica-

tions for regional economies, water supply and climate-carbon cycle

feedbacks are substantial.
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