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Summary

� The tropics are predicted to become warmer and drier, and understanding the sensitivity of

tree species to drought is important for characterizing the risk to forests of climate change.

This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate

the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought

in six tree genera.
� The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modu-

lus, relative water content and saturated water content) were compared between seasons

and between plots (control and through-fall exclusion) enabling a comparison between short-

and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation

parameters to determine whether water relations differed among tissues.
� The key findings were: osmotic adjustment occurred in response to the long-term drought

treatment; species resistant to drought stress showed less osmotic adjustment than drought-

sensitive species; and water relation traits were correlated with tissue properties, especially the

thickness of the abaxial epidermis and the spongy mesophyll.
� These findings demonstrate that cell-level water relation traits can acclimate to long-term

water stress, and highlight the limitations of extrapolating the results of short-term studies to

temporal scales associated with climate change.

Introduction

The Amazon accounts for half the world’s tropical rainforest
(Fritz et al., 2003), contains c. 123� 31 pg of carbon in woody
biomass (Malhi et al., 2006; Saatchi et al., 2007; FAO, 2010),
contributes over 10% of the world’s biodiversity (Da Silva et al.,
2005; Lewinsohn & Prado, 2005) and is suggested to influence
rainfall patterns as far away as Asia (Lawrence & Vandecar,
2015). Many of the ecosystem functions and services carried out
by the forests of the Amazon basin are dependent on its hydro-
logic regime (Boisier et al., 2015). Yet, Earth system models have
been used to suggest that the hydrology of the Amazon may
change drastically under future climate change scenarios through
increases in dry season length, long-term soil drying, and
increased frequency and intensity of drought events (Christensen
et al., 2013; Fu et al., 2013; Reichstein et al., 2013; Boisier et al.,
2015). Such shifts in climate may result in higher tree mortality
(Phillips et al., 2009; Allen et al., 2010), threaten biodiversity and

increase the possibility of climate feedbacks, the magnitude and
direction of which remain uncertain. Currently, vegetation mod-
els used to represent the dynamic response to climate in Earth
system models (dynamic global vegetation models (DGVMs))
lack the capability to predict ecological responses to drought
within tropical forests reliably (Powell et al., 2013; Meir et al.,
2015a), in part as a consequence of poor representation of how
soil water stress influences leaf-scale processes (Rowland et al.,
2015b). To improve such representations, a greater empirical
understanding of how soil water stress impacts leaf-level processes
is necessary.

According to the cohesion-tension theory (Dixon & Joly,
1895), water moves down a free energy gradient (water potential
(Ψ)) from soil to the leaves (following a pressure gradient along
the xylem). For a plant to maintain its transpiration stream dur-
ing drought, the leaves must be able to generate and sustain lower
Ψ than the soil (Bowman & Roberts, 1985). The presence of
solutes in the symplast (usually represented as osmotic potential
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(Ψp), with more negative values indicating higher solute concen-
tration) enables leaves to reach lower Ψ than the soil while main-
taining turgor pressure. Thus, a lower osmotic potential enables a
plant to function while drawing water from drier soil (Bowman
& Roberts, 1985). Consequently, both osmotic potential at full
turgor (Wo

p) and the water potential at turgor loss point (Wtlp
p ) are

good predictors of plant sensitivity to drought stress (Bartlett
et al., 2012). Turgor loss point is influenced by both the bulk
modulus of elasticity (e; the difference in turgor per unit relative
change in cell volume) and Wo

p, which appears to be the stronger
determinant (Lenz et al., 2006; Bartlett et al., 2012). Additional
water relation parameters derived from pressure–volume (PV)
curves, for example capacitance, relative water content at Wtlp

p
and saturated water content, can also affect the drought sensitiv-
ity of a plant.

Osmotic adjustment to seasonal water stress is common and
has been the focus of much research (see Bartlett et al., 2014 for
a review). However, few, if any, studies have directly addressed
the question of how the capacity for seasonal adjustment equips
species to cope with long-term shifts in water availability. Is there
a physiological limit to osmotic adjustment determined by typical
dry season water availability? Do species showing greater seasonal
variability in water relations stand a better chance of coping with
long-term climate changes? Understanding the variation and
plasticity of leaf tissue-level parameters is essential to answering
these questions and determining the ecosystem-level response to
environmental change.

Recent evidence suggests that tissues within leaves may be
functionally ‘sequestered from one another’ (Rockwell et al.,
2014; Buckley, 2015; Buckley et al., 2015). Leaf tissues are
likely to experience different levels of hydration during tran-
spiration (Rockwell et al., 2014; Buckley et al., 2015), and
may be hydraulically compartmentalized (Nardini et al., 2010;
Blackman & Brodribb, 2011; Canny et al., 2012). Given the
evidence that the palisade mesophyll maintains turgor during
transpiration (Canny et al., 2012; Buckley et al., 2015), we
hypothesize that it may have a more negative osmotic poten-
tial than other cell layers. If that were the case, one might
predict a correlation to emerge between palisade relative
thickness and tissue-level osmotic potential. Furthermore,
Canny et al. (2012) also observed that spongy mesophyll cells
‘easily lose water’ compared with the palisade matrix cells, so
we suggest that the spongy mesophyll acts as a hydraulic
buffer. A relationship could thus be postulated between
spongy mesophyll volume (excluding airspaces) and tissue-level
capacitance (Canny et al., 2012). Linking drought stress vul-
nerability with pressure volume traits and leaf anatomy could
both strengthen the current understanding of leaf function
and facilitate the identification of traits indicative of drought
sensitivity or tolerance.

This study aimed to test whether tropical rainforest species can
acclimate to changes in water availability on both a short time-
scale, represented by seasonal differences, and a long time-scale,
using a long-term (> 12 yr) through-fall exclusion experiment
(TFE) in the Caxiuan~a National Forest Reserve, State of Para, in
Brazil. We correlated tissue-level pressure volume parameters

with leaf anatomical traits for indications of whether particular
cell types contribute disproportionately to some PV traits, thus
examining linkages between tissue form and function. The fol-
lowing hypotheses were tested.

(1) Acclimation to long-term soil moisture deficit results in
greater osmotic adjustment and changes in elastic modulus than
does acclimation to seasonal differences in soil moisture availabil-
ity. Thus, osmotic potential at full turgor and turgor loss point
are expected to be more negative, and elastic modulus more posi-
tive, in response to the long-term drought treatment than in
response to dry season changes
(2) Drought-resistant taxa show greater seasonal osmotic adjust-
ment than drought-sensitive taxa.
(3) Palisade volume per unit leaf area correlates negatively with
osmotic potential at full turgor and turgor loss point, suggesting
higher solute concentration in this tissue. Spongy mesophyll vol-
ume per unit area correlates positively with capacitance, indicat-
ing a role as a water storage site.

In summary, this study aimed to determine how leaf water
relations parameters varied in response to changes in water
availability that resulted from seasonal differences in rainfall and
a long-term field-scale soil moisture reduction experiment in trees
from the lowland Amazon rainforest. Changes in parameters
attributable to seasonal variation in rainfall were compared with
those arising from an experimentally imposed drought (soil mois-
ture deficit) to explore the adaptive capacity of rainforest tree
leaves. The PV parameters were modeled against the absolute and
relative values of thickness and volume of the leaf tissues to
provide an indication of whether hydraulic differences occur
among cell layers, and to facilitate the identification of traits
indicative of differential drought sensitivity.

Materials and Methods

Study site

The study was undertaken in the Caxiuan~a National Forest
Reserve in the eastern Amazon (1o430S, 51o270W). The site is sit-
uated in lowland terra firme rainforest 10–15 m above river level.
The site has a mean temperature of c. 25°C, receives 2000–
2500 mm of rainfall annually and has a dry season in which rain-
fall is < 100 mm per month between June and November. The
soil is a yellow oxisol of 3–4 m depth, below which is a laterite
layer 0.3–0.4 m thick (Fisher et al., 2007).

Large-scale through-fall exclusion experiment (TFE)

The TFE is one hectare of rainforest in which canopy through-
fall has been reduced by c. 50% since January 2002 (Meir et al.,
2015b). An artificial ‘roof’ was constructed from clear plastic
panels and wooden guttering at a height of 1–2 m above the
ground. The intercepted water is channeled down-slope to a
point > 50 m away from the TFE. Both the TFE and the nearby
control plot are surrounded by trenches 1–2 m deep to prevent
lateral subsurface flow of water into the study plots. The plots,
both 1 ha, are divided into 10 m9 10 m subplots and the
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outermost subplots are excluded from the study to mitigate the
potential for edge effects on tree growth. For further details of
the experimental set-up and key results, see Meir et al. (2015b)
and Rowland et al. (2015c).

Study specimens and drought sensitivity status

This study used six of the most common genera in the plots,
which have been previously determined to be drought-sensitive
(Manilkara, Eschweilera and Pouteria) and drought-resistant
(Protium, Swartzia and Licania) through analysis of drought-
induced mortality rates (da Costa et al., 2010; Meir et al., 2015b;
Rowland et al., 2015c). A genus was determined to be drought-
sensitive if it experienced 50% higher mortality and the death of
at least two more individuals in the TFE than in the control plot
(da Costa et al., 2010). This criteria were re-applied by Rowland
et al. (2015c) following 13 yr of experimental drought and the
results were found to have remained consistent with the determi-
nation of da Costa et al. (2010). Henceforth, these genera are
referred to simply as ‘sensitive’ or ‘resistant’ genera. Where possi-
ble, a single species was used to represent a genus (Pouteria
anomala (Pires) T.D. Penn., Manilkara bidentata (A.DC.)
A.Chev. and Swartzia racemosa (Benth.)), but more than one
species was used where there were too few individuals in a species
per plot: Eschweilera is represented by the species Eschweilera
coriacea (DC.) S.A.Mori, Eschweilera grandiflora (Aubl.) Sand-
with and Eschweilera pedicellata (Rich) S.A.Mori, Licania by
Licania membranacea (Sagot ex Laness) and Licania octandra
(Kuntze) and Protium by Protium tenuifolium Engl. and Protium
paniculatum Engl. This approach was necessary to obtain suffi-
cient numbers of trees within each genus and plot to enable a
comparison, and has been adopted in other studies (Butt et al.,
2008; van Mantgem et al., 2009). It is acknowledged that rele-
vant interspecific differences do occur within a genus (Abrams,
1990), but in this study, variance among individuals within a
genus was consistently less than variance among genera, as
demonstrated by the difference between the percentages of
variance explained by the random effects tree individual (ID) and
genus (Gn) in Table 1.

Experimental protocol

Pressure–volume curves To provide information on seasonal
variability in PV parameters, measurements were carried out at
the end of the dry season in November 2013 and the end of the
wet season in May 2014, corresponding to periods of minimum
and maximum soil water availability, respectively. The same sets
of individuals were sampled in both periods, with the exception
of the genus Eschweilera for which three additional individuals
were measured on each plot in the dry season. Top-canopy, fully
sunlit branches were sampled, and after excision they were re-cut
under water and immediately transported back to the laboratory
in water, where they were again re-cut under water filtered to
0.2 lm, and then allowed to rehydrate overnight. Previous stud-
ies have demonstrated that rehydrating specimens before PV
analysis can influence the results, particularly Wo

p, which tends to
increase (move closer to zero) as a result of very short-term
osmotic adjustment (Meinzer et al., 1986; Kubiske & Abrams,
1991; Yan et al., 2013; Meinzer et al., 2014). For two temperate
zone species, Meinzer et al. (2014) showed that some PV parame-
ters correlated strongly with the initial water potential (r2 of 0.78
to 0.94 for the elastic modulus and turgor loss point (TLP),
respectively) in the highly anisohydric species Juniperus
monosperma, but this relationship was not found in the isohydric
species Pinus edulis. However, because the purpose of this study
was to compare changes in these and several other parameters
(e.g. Rowland et al., 2015a,c) in response to long-term drought
and to seasonal differences in water availability, and not just ini-
tial water potential, full rehydration was employed to standardize
starting conditions for all samples. Moreover, as there were 10
species in this study, presumably exhibiting different levels of iso-
hydry, quantifying the degree of change with respect to initial
water potential in each species would have been challenging given
the field conditions. Leaves were selected that were fully
expanded, mature and entirely unblemished, or had < 5% of
their surface covered by epiphylls – lichens, fungi and mosses that
colonize leaf surfaces. PV curves were obtained for a minimum of
three leaves per genus per plot per season (one leaf per tree and
nine leaves overall per sensitivity group) according to the ‘bench

Table 1 Proportions of variance of model components in percentage, total variance of transformed data and the conditional and marginal r2

Wtlp
p Wo

p SWC RWCtlp e C

Variance (%)
Fixed 30 32 4 13 13 10
Random
ID 8 3 27 9 4 11
Gn 33 26 44 19 11 24
Residual 30 39 24 59 71 55

Total variance 0.1965 0.3060 0.0537 0.0090 0.3568 0.2809
r2conditional 0.70 0.60 0.76 0.41 0.29 0.45
r2marginal 0.30 0.32 0.04 0.13 0.13 0.10

The total variance used for calculating the percentages was determined using the product of the variance values derived from the models as per Nakagawa
& Schielzeth (2013), and is, therefore, not identical to the ‘Total variance’ value listed in the table. Variables are turgor loss point (Wtlp

p ), osmotic potential at
full turgor (Wo

p), saturated water content (SWC), relative water content atWtlp
p (RWCtlp), elastic modulus (e) and capacitance (C), and the variance pertains

to individuals (ID) from the six tropical rainforest genera (Gn) Eschweilera, Licania, Swartzia,Manilkara, Pouteria and Protium.

� 2016 The Authors
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drying’ protocol described in Tyree & Hammel (1972). Briefly,
as the leaf dried out over a period of 3–8 h, repeated measure-
ments of leaf water potential (Ψ) and mass were taken using a
Scholander pressure bomb (PMS Instruments Co., Corvallis,
OR, USA) accurate to 0.05 MPa and mass balance accurate to
0.1 mg, respectively. After the final water potential measurement,
the leaves were scanned to determine area using IMAGEJ software
(Schneider et al., 2012) and then dried to constant mass in an
oven at 70°C for > 48 h. The points were then plotted as 1/Ψ
against leaf mass, enabling the calculation of the parameters
osmotic potential at full turgor (Wo

p; MPa), turgor loss point
(Wtlp

p ; MPa), saturated water content (SWC; the ratio of water
mass to leaf dry mass in a fully saturated leaf; g g�1), relative
water content at Wtlp

p (RWCtlp; %), modulus of elasticity (e;
MPa) and hydraulic capacitance (C; mol MPa�1 m�2). Calcula-
tions of variables from PV curves were carried out according to
Sack & Pasquet-Kok (2011). We recognize that PV data analysis
may contain a number of sources of error including the decision
of which points to include to identify Wtlp

p . While it is very diffi-
cult to account for all possible error sources in a single analysis
framework, we employed a maximum likelihood approach based
on mixed effects modeling to avoid inflating degrees of freedom
in nested samples and check normality assumptions (see
‘Statistical analysis of drought treatment effects on PV
parameters’ for details of the statistical analysis).

Morphological traits All samples for the tissue analysis were
taken in the wet season. Small squares of leaf, c. 8 mm to a side,
were taken from midway along the leaf between the midrib and
the edge of the lamina and were sectioned using a hand-held
microtome (Euromex, Arnhem, Holland). Images of the sections
were taken with a Moticam 2 digital camera on a Motic B3
microscope (Motic, Barcelona, Spain). A magnification of 940
was used where the leaf was thin enough to view a whole section,
from upper to lower cuticle, in one image. For thicker leaves it
was sometimes necessary to use a magnification of 910 to ensure
that each tissue measurement was taken on a single ‘transect’,
thus providing reliable proportional measurements. Where mea-
suring all tissue layers on one image was not possible, multiple
images were used per single leaf section – these values were only
employed for absolute tissue measurements and were excluded
from the analysis of proportional measurements. The values for
each tissue thickness (abaxial epidermis (Ab), palisade (Pal),
spongy mesophyll (SM) and adaxial epidermis (Ad)) for each tree
are means taken from a single measurement from two leaves per
tree.

The cavity volume of leaves (CV, otherwise referred to as leaf
airspaces) was measured by subtracting the mass of fully hydrated
leaves from the mass of the same leaves after perfusion with
water. Branches were allowed to hydrate overnight and leaves
were only used if adjacent leaves had a water potential higher
than �0.2MPa. The leaves were then weighed before being per-
fused with water at a pressure of 18 kPa for a minimum of 20 h
and then reweighed. The risk of emboli forming in the petiole
before perfusion was minimized by taking the initial weight with
a small section of branch attached to the leaf. The petiole was

then severed at its base with a razor blade under water filtered to
0.02 lm and attached to a silicon tube; the excised branch seg-
ment was then weighed and this was subtracted from the initial
weight. Two leaves per individual were measured, all leaves being
measured for area and dry mass. Cavity volume was expressed as
volume per unit area (lm3 lm�2), which is equivalent to thick-
ness per leaf section (lm) and so directly comparable to the other
tissue thickness measurements.

The tissue measurements, cavity volumes and PV analysis were
all carried out on different leaves to avoid the effects of one leaf
manipulation influencing the others. Therefore, each set of mea-
surements was averaged per individual tree to enable the correla-
tion analysis to be performed. Both the tissue and the cavity
volume measurements were only carried out in the wet season,
but because genus was found to be the largest source of variance
and because the seasonal effects were only found for SWC and
RWCtlp, we pooled the results for the PV parameters across sea-
sons to maintain the largest possible sample size.

Statistical analysis of drought treatment effects on PV
parameters

Results for the response of PV parameters to the drought treat-
ment were analyzed using linear mixed effects models using the
packages LME4 (Bates et al., 2015) and LMERTEST in R (R Core
Team, 2015). As the focus of this study was understanding sensi-
tivity and resistance to drought and not the effect of taxon, genus
and individual (tree) were included as nested random effects.
Therefore, large differences between species within a genus would
be represented by high variance in the random effect category
‘ID’ (tree individual), because the variance in the ID term groups
the inter-individual and inter-species variance (Table 1). Models
were initially constructed using all variables and interactions (e.g.
treatment9 season9 sensitivity status), and were manually sim-
plified by systematically removing nonsignificant variables and
interactions. The best model (Table 2) was selected on the basis
of the Akaike information criterion (AIC). The distribution of
the data was assessed using the profile function as per Bates et al.
(2015) and the data were transformed accordingly. The condi-
tional and marginal r2 values were calculated as per Nakagawa &
Schielzeth (2013).

Regression analysis of leaf anatomy and PV parameters

The PV parameters were compared to the absolute and propor-
tional thicknesses of leaf tissues using multiple linear regression
in R (R Core Team, 2015). Of the PV parameters, Wo

p and Wtlp
p

represent conditions in the symplast, while the other parameters,
SWC, RWCtlp, C and e, represent the entire water-occupied vol-
ume of the leaf. The elastic modulus, e = dP/dRWCleaf, where P
is the turgor pressure, can be calculated to represent only the
symplast (and therefore the influence of turgor on cell wall
expansion); however, bulk e is used here to avoid errors arising
from the extreme extrapolation of the PV curve to the y intercept
needed to return e for only the symplast (Andersen et al., 1991),
and to minimize the impact of the necessary assumption that the
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apoplastic fraction remains constant throughout the PV analysis
(Tyree & Richter, 1981). Therefore, the SWC, RWCtlp, C and e
all represent conditions of both the symplast and the cell walls,
the ratio of which will vary between tissue layers depending on
cell geometry and cell wall thickness. Absolute measurements of
tissue thickness (Ababs, Palabs, SMabs and Adabs) represent volume
per unit area (lm3 lm�2 = lm), and correlations of PV parame-
ters with absolute measurements would indicate a functional link
between the tissue type and the PV parameter. For example, a
correlation between Wo

p and Palabs, but not Palprop (palisade
thickness as a proportion of leaf thickness), would indicate that a
thicker palisade leads to or requires higher Wo

p. However, correla-
tions of PV parameters with proportional measurements of tissue
thickness (Abprop, Palprop, SMprop and Adprop) would indicate
which tissues are particularly influential in the overall leaf-level
value, and possibly are different from the leaf average. A signifi-
cant relationship between a PV parameter and proportional tissue
thickness might suggest that the properties of the tissue in ques-
tion are important in determining the overall leaf-level values.

Because Wo
p and Wtlp

p are fundamental properties of the sym-
plast which can become decoupled from cell volume through
changes in cell size and cell wall thickness (Supporting Informa-
tion Fig. S1), the same analysis was carried out by calculating the
symplast volume of each tissue (Methods S1). The symplast vol-
ume was calculated using mean cell size and cell wall thickness,
and by assuming that spongy mesophyll cells were spherical, pal-
isade cells were cylindrical and epidermal cells were cuboids. It
was not possible to measure cell wall thickness with sufficient
accuracy because of the resolution of the images (S2), so mean
cell wall thickness was derived from values presented by Buckley
et al. (2015) for 14 species (n = 13 for spongy mesophyll). Given
the additional error associated with the assumption of cell shape,
the adoption of a mean cell wall thickness taken from other
species, the reduction in the degrees of freedom because of the
difficulty in measuring cell size accurately (mean df = 25 for tis-
sue thickness and 17 for symplast volume) and the similarity in
the results between the tissue thickness and the symplast analyses,

the tissue thickness results are presented here while the alternative
analysis is given in Table S1.

Tissue thicknesses, cavity volume and PV parameters were all
averaged for each individual tree before performing the regression
analyses. The cavity volume was subtracted from the total spongy
mesophyll volume to give a value of water-saturated spongy mes-
ophyll volume, but the interaction between spongy mesophyll
and cavity volume was analyzed for significance. This required
the assumption that the cavity volume in the palisade layer was
negligible compared with that in the spongy mesophyll, which
was consistent with the images (Fig. S1). Absolute and propor-
tional tissue thicknesses were modeled separately to highlight the
different effects and to reduce correlation among independent
predictors. Thus, the starting structure of the models was Y ~
Pal + Ad + Ab + SM 9 CV for both absolute and proportional
measurements, where Y stands for the response variable and the
sign ~ stands for ‘as a function of’. Models were simplified by
sequentially removing the factors that did not contribute signifi-
cantly to increase model log-likelihood. At each simplification,
successive models were compared using AIC values with a v2 test.
Variance inflation factors for all variables in the final models were
found to be < 3, indicating very limited autocorrelation among
independent variables.

Results

Hypothesis 1 (H1): Imposed drought vs seasonal effects

Water relation parameters varied greatly by season and treatment,
with no common pattern existing across all parameters. Signifi-
cant treatment effects were detected for Wtlp

p (P = 0.041), Wo
p

(P = 0.038) and e (P = 0.030), while no significant effects were
found for SWC, RWCtlp and C (Table 3). Both Wtlp

p and Wo
p

(which were highly correlated; r2 = 0.94), were lower (more nega-
tive) in the TFE compared to the control, while e was larger in
the TFE than in the control. By contrast, significant seasonal
changes occurred for SWC, RWCtlp and C, while no significant
seasonal effects were detected in Wtlp

p , Wo
p and e (Table 3; Fig. 1).

Values of SWC and RWCtlp were higher and those of C lower in
the wet season. Thus, Wo

p, W
tlp
p and e had stronger (long-term

drought) treatment than seasonal effects, consistent with H1.
Trends in both C and e were opposite to those expected from dif-
ferences in water availability between season and treatment; C
was highest in the dry season and in the control plot, with oppo-
site trends for e. Interactions between treatment and season were
found only for capacitance, which showed no seasonal difference
in the TFE, but an increase in the dry season in the control plot
(Fig. 2).

Hypothesis 2 (H2): Drought sensitivity status vs seasonal
variation

Drought sensitivity status alone had no significant impact on any
of the parameters, but there were significant interactions between
sensitivity and season for Wo

p (P < 0.001), Wtlp
p (P < 0.001) and C

(P = 0.044; Table 3; Fig. 3). In resistant species, Wo
p and Wtlp

p

Table 2 Models used to describe variables measured in six tropical
rainforest genera: Eschweilera, Licania, Swartzia,Manilkara, Pouteria and
Protium

Response
variable Symbol Units Transformation

Model
structure

Turgor loss point Ψp
tlp MPa log(�19 Y) T9 V9 S

Osmotic potential
at full turgor

Ψp
0 MPa log(�19 Y) T9 V9 S

Saturated water
content

SWC gwater g
�1

dry_mass log(Y) T + S

Relative water
content at TLP

RWCtlp % arcsin(Y/100) S

Capacitance C mol Mpa�1 m�2 log(Y) T9 V9 S
Elastic modulus e MPa Y0.34 T9 V9 S

Model terms are as follows: T, treatment (through-fall exclusion or control
plot); V, drought vulnerability status (sensitive or resistant); S, season (dry
or wet). In all models tree individual nested inside genus was a random
effect used to adjust only the intercept.

� 2016 The Authors

New Phytologist� 2016 New Phytologist Trust
New Phytologist (2016) 211: 477–488

www.newphytologist.com

New
Phytologist Research 481

 14698137, 2016, 2, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.13927 by T

he U
niversity O

f T
exas R

io G
rande V

allley, W
iley O

nline L
ibrary on [14/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



showed little seasonal variation but in sensitive species both
parameters were higher in the wet season. This is opposite to H2,
that resistant genera would show greater seasonal variation. How-
ever, the reverse trend was evident for C, in which greater sea-
sonal changes occurred in resistant species. Significant three-way
interactions occurred between treatment, season and sensitivity
status for Wtlp

p (P = 0.007), Wo
p (P = 0.004), e (P = 0.044) and C

(P = 0.018), because of a large treatment effect among resistant
species in the dry season, which was largely absent in the wet sea-
son and for the sensitive species.

Variance in drought treatment analysis

The r2conditional, showing the total amount of variance explained
by the models, varied from 0.29 for e to 0.76 for SWC (Table 1).
The greatest proportion of explained variance in the mixed effects
models was accounted for by the experimental (fixed) effects in
Wo

p and e but by random differences from genus to genus in the
other variables. The variance attributed to individuals within a
genus was typically a small proportion (3–11%) of total variance
(with the exception of SWC: 27%), indicating that traits varied
little among individuals within these genera. The modeled fixed
effects accounted for between 4 and 32% of total variance, and
were highest for Wtlp

p andWo
p, at 30 and 32%, respectively.

Hypothesis 3 (H3): PV traits and tissue correlations

Contrary to expectation, there was no correlation between Wo
p

and either Palabs or Palprop, but Palabs was significantly negatively
correlated with Wtlp

p and the relationship between Palprop and
Wtlp

p was marginally significant (Fig. 4a; Table 4). SMprop corre-
lated with C (Fig. 4b) and Wo

p, and, interestingly, SMabs had
highly significant positive correlations with Wtlp

p , Wo
p (Fig. 4c),

SWC and RWCtlp. As SMabs correlated strongly with leaf thick-
ness (R2 = 0.76; P << 0.001), they were employed in separate
models to determine whether the correlations with SMabs arose
simply as a function of leaf thickness. Neither Wtlp

p nor Wo
p corre-

lated with leaf thickness, while both SWC and RWCtlp did
(R = 0.48, P = 0.003, and R2 = 0.61, P < 0.001, respectively)
albeit less strongly than with SMabs. Abprop correlated with Wtlp

p

(Fig. 4d) and Wo
p, but Ababs correlated only with Wtlp

p . However,
Adabs correlated with Wtlp

p , Wo
p, C and e, but Adprop only corre-

lated with RWCtlp. The absolute measurements of cavity volume
did not correlate with any of the variables but significantly
improved the strength of the models for Wtlp

p , SWC and C, while
CVprop only significantly improved the model for C. The models
were initially performed with response variables transformed as
in the mixed models; however, the transformation made little dif-
ference to the model results and so transformations were not used
to facilitate interpretation of the model coefficients.

Hypothesis 3, i.e. that Pal should correlate with Wo
p, while SM

should correlate with C, can be rejected in terms of there being
no correlation between palisade thickness and Wo

p, although the
correlation between SMprop and C may suggest that the spongy
mesophyll plays a role in water storage. Interesting correlations
that were not predicted include the negative correlation between
the palisade thickness and Wtlp

p , the negative correlations between
Abprop and both Wtlp

p and Wo
p and the positive correlations

between SMabs andWtlp
p ,Wo

p, SWC and RWCtlp.

Discussion

This study reveals how leaf water relations in Amazonian rain-
forest trees respond to long-term experimental drought and
whether these responses are related to: (1) seasonal leaf water rela-
tions; (2) differential rates of drought-induced mortality; (3) leaf
tissue morphology. Overall, the studied trees, independent of
drought-sensitivity status, showed greater acclimation to the
experimental soil moisture deficit than to seasonal variation in
water availability, primarily via osmotic adjustments (H1). The
designation of drought sensitivity of a species (based on mortality
response; da Costa et al., 2010) was only important in these data
with respect to differences in seasonal acclimation: drought-
sensitive species underwent greater levels of seasonal osmotic
adjustment than resistant species (H2; Table 3), but a significant
difference in the sensitivity status per se was not found. Lastly,
palisade thickness did not correlate with osmotic potential at full
turgor, but SMprop did correlate with leaf hydraulic capacitance
(H3; Table 4). Our data imply that caution is needed in ascribing
acclimation capability to drought based on short-term (seasonal)

Table 3 Probability values and coefficients for the fixed effects included in the mixed models listed in Table 2; factors with a dash were not included in the
final model, and values where P < 0.05 are in bold

Factor

Wtlp
p Wo

p SWC RWCtlp e C

P Coef. P Coef. P Coef. P Coef. P Coef. P Coef.

S 0.334 0.09 0.317 0.13 0.015 0.05 < 0.001 0.07 0.068 0.35 0.007 �0.42
T 0.041 0.25 0.038 0.33 0.068 �0.08 – – 0.03 0.49 0.05 �0.38
V 0.599 �0.14 0.509 �0.20 – – – – 0.876 �0.04 0.953 �0.02
S : V < 0.001 �0.55 < 0.001 �0.71 – – – – 0.156 �0.39 0.044 0.45
T : S 0.131 �0.21 0.089 �0.33 – – – – 0.055 �0.53 0.014 0.55
T : V 0.084 �0.29 0.053 �0.41 – – – – 0.027 �0.67 0.059 0.49
T : S : V 0.007 0.52 0.004 0.79 – – – – 0.044 0.77 0.018 �0.74

Factors are season (S; dry or wet), treatment (T; through-fall exclusion or control plot) and vulnerability status (V; drought-sensitive or drought-resistant).
Variables are turgor loss point (Wtlp

p ), osmotic potential at full turgor (Wo
p), saturated water content (SWC), relative water content atWtlp

p (RWCtlp), elastic
modulus (e) and capacitance (C).
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data: we demonstrate that tissue-level water relation traits can
acclimate to long-term water stress, but that seasonal osmotic
adjustment may not be an adaptive advantage in coping with
extended drought stress.
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Fig. 2 Plot (control and through-fall exclusion (TFE)) and season (wet
and dry) effects on hydraulic capacitance in 44 tropical rainforest
trees from six genera. Both the seasonal effect (P = 0.007) and the
interaction between season and drought treatment (P = 0.014) are
significant. Gray bars, dry season; white bars, wet season. Bars display
the mean� 1 SE.

Dry

ψ
πo   (

M
P

a)

−2.0

−1.5

−1.0

−0.5

0.0

Dry

Wet

Wet

ψ
πtlp

  (
M

P
a)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Dry Wet

C
ap

ac
ita

nc
e

(m
ol

 M
P

a−1
 m

−2
)

0.0

0.1

0.2

0.3

0.4

Fig. 3 Season and drought sensitivity status effects for osmotic potential at
full turgor (Wo

p; P < 0.001), osmotic potential at turgor loss point (Wtlp
p ;

P < 0.001) and hydraulic capacitance (P = 0.044) in 44 tropical rainforest
trees from six genera. Gray bars, drought-resistant species; white bars,
drought-sensitive species. Bars display the mean� 1 SE.
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Fig. 1 Comparison between seasonal and plot effects of pressure volume
parameters in 44 tropical rainforest trees from six genera. (a) Comparison of
plots.White bars, control plot; gray bars, through-fall exclusion plot (TFE). (b)
Comparison of seasons.White bars, wet season; gray bars, dry season. Bars
display themean� 1 SE and significance is denoted by asterisks: *, < P = 0.05;
**, < P = 0.01; ***, < P = 0.001; P = 0.05 < • < P = 0.10. Annual rain in the
drought plot is�90mmpermonth, in the control plot is�180mmper
month, in the wet season (averaged between the TFE and control plot) is
�210mmpermonth and in the dry season is�60mmpermonth.Wtlp

p ,

turgor loss point;Wo
p, osmotic potential at full turgor; SWC, saturatedwater

content; RWCtlp
is, relativewater content atWtlp

p .
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H1: Imposed drought vs seasonal response inWo
p,W

tlp
p

and e

Consistent with H1, W
o
p, W

tlp
p , and e all showed a significant

response to the drought treatment and no seasonal effect. Stable
osmotic gradients, such as those between the symplast and
apoplast, require energy to be created and maintained as they
involve moving molecules up a gradient of osmotic potential
(Nobel, 1999). Moreover, excessively high solute concentrations,
as a result of dehydration, run the risk of causing membrane

damage (Steponkus, 1984; Bryant et al., 2001). The cost and risk
associated with increasing solute concentration are, therefore,
likely to result in a physiological maximum solute concentration.
The finding that Wo

p is significantly different between plots, but
not seasons, indicates that the magnitude of seasonal osmotic
adjustment does not represent a physiological limit for longer
term water deficits and is therefore not a good indicator of a
species’ capacity to cope with long-term reduction in water avail-
ability. The higher e in the TFE is consistent with the general
negative correlation between e and Wo

p (Niinemets, 2001; and
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Fig. 4 Relationships between pressure–
volume parameters and tissue thickness in 28
tropical rainforest trees from six genera. The
Pearson product–moment correlation
coefficient for: (a) is r =�0.44, (b) is r = 0.32,
(c) is r = 0.47, and (d) is r =�0.55.Wtlp

p is
turgor loss point andWo

p is osmotic potential
at full turgor.

Table 4 Slope coefficients for linear regressions of pressure volume parameters in tropical rainforest trees against tissue thickness, expressed in either
absolute (upper section) or proportional units (lower section)

Tissue

Models

Wtlp
p (MPa) Wo

p (MPa) SWC RWCtlp (%) C (mol MPa�1 m�2) e (MPa)

Absolute tissue thickness (lm9 10�3) SMabs 9.88*** 9.31*** 5.27*** 46.90*** – –
Palabs �10.49* �6.33 �5.74** – – –
Ababs �32.21* �29.35 � – – – 433.90
Adabs �30.83** �27.03* – – �7.07* 655.90**
CVabs 92.01 � – 60.88 � – 30.88 � –
P value < 0.001 < 0.001 < 0.001 < 0.001 0.056 0.001
R2

adjusted 0.67 0.61 0.48 0.44 0.15 0.31
df 21 22 24 26 24 31

Proportional tissue thickness SMprop 1.62 � 2.33** – – 0.50 * �34.07�
Palprop �1.96 � – �1.48** – – –
Abprop �8.69* �8.10* – – – –
Adprop – – – �17.58** – –
CVprop – – – – 0.60 � –
P value < 0.001 < 0.001 0.004 0.005 0.059 0.061
R2

adjusted 0.56 0.51 0.22 0.21 0.14 0.1
df 21 22 30 30 25 26

Tissue parameters with a dash were not included in the final model. Significance is denoted by asterisks: *, < P = 0.05; **, < P = 0.01; ***, < P = 0.001;
P = 0.05 < � < P = 0.10, and significant values are in bold. The significance, P, proportion of explained variance, R2, and the degrees of freedom, df, are given
for each model. Variables are turgor loss point (Wtlp

p ), osmotic potential at full turgor (Wo
p), saturated water content (SWC), relative water content atWtlp

p

(RWCtlp), elastic modulus (e) and capacitance (C). Absolute measurements of tissue thickness are given in lm9 10�3, which gives units for the slope as e.g.
‘slope’9 10�3MPa lm�1.
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Bartlett et al., 2012), and the combination of the changes in these
two parameters contributes to drought resistance by creating a
greater change in Ψ for a given amount of water loss, thus facili-
tating water uptake from drier soils without turgor loss (Bowman
& Roberts, 1985). It is not known what determines the maxi-
mum capacity for adjustment in osmotic properties or the elastic
modulus and, therefore, the adaptation of the trees in this study
could not have been predicted without a long-term experiment.
The ability of trees to adapt to long-term changes in water avail-
ability is fundamental to predicting how tropical forests are going
to respond to climate change and, if overlooked, could lead to
inaccurate projections of future vegetation–climate interactions.

H2: Seasonal plasticity and drought sensitivity

Several studies have indicated that osmotic adjustment is linked
to drought resistance (Kubiske & Abrams, 1991; Tschaplinski
et al., 1998; Mitchell et al., 2008), suggesting that drought-
resistant species should show greater seasonal variation in osmotic
traits (H2). In contrast to this expectation, it was the drought-
sensitive species that showed greater seasonal osmotic adjustment
(Fig. 3), while the resistant species showed very little. The
drought-sensitive species had significantly higher (less negative)
Wo

p and Wtlp
p in the wet than dry season, which should, presum-

ably, lead to lower maintenance costs than in the resistant species.
On this basis, drought-sensitive species might be expected to have
lower respiration than the resistant species. However, there was
no correlation between Wo

p and leaf dark respiration among these
species (P = 0.4; R2 = 0.02; data not shown) and previous work
has demonstrated that the leaves of the sensitive species in the
drought plot had higher leaf dark respiration, especially in the
dry season (Rowland et al., 2015c). Capacitance also showed an
interaction between season and vulnerability status, but with a
reverse trend to the osmotic parameters, in which the resistant
genera showed seasonal variation while the sensitive genera
showed little response (Fig. 3).The finding that most osmotic
adjustment happened in the sensitive species may indicate that,
rather than being an active strategy to reduce sensitivity to water
stress, it may be an indirect result of another process. It is also
worth stressing that no significant effect of the sensitivity status
was found on leaf nonstructural carbohydrate concentrations and
that this last parameter even increased slightly in the dry season
in all species (Rowland et al., 2015c).

There was an apparent divide between the parameters in this
study that responded significantly to the drought treatment, Wo

p,
Wtlp

p , and e, and those that responded more to seasonality, SWC,
RWCtlp and C (Table 3). SWC, C and RWCtlp have also been
suggested to play a role in drought resistance (Kubiske &
Abrams, 1991; Niinemets, 2001; Hao et al., 2008) but, in this
case, their response to the experimental drought was not signifi-
cant (P > 0.05), despite their short-term response to seasonal
water availability. Given the mechanistic nature of the links
between PV parameters, the disparity in responses between the
two groups of traits may be seen as surprising. It is possible that
the difference between the groups is caused by seasonal changes
in cell wall properties; hence Wo

p and Wtlp
p do not change

seasonally, as they are properties of the symplast, while e would
be influenced only slightly by the changes in the water content of
the cell walls. Another potential explanation is ontogenetic
changes, whereby leaves of a similar age change systematically
throughout the year. However, immature leaves were intention-
ally avoided and an analysis of variability in mean leaf area across
seasons demonstrated that leaves were fully expanded (unpub-
lished data). Therefore, it is concluded that, while seasonal differ-
ences alone were not significant in the osmotic parameters or e,
there were nonsignificant seasonal trends (Fig. 1) which led to
significant variation in the other parameters.

H3: Correlations between anatomical and water relation
traits

It was hypothesized that the thickness of the palisade layer would
correlate negatively with osmotic potential at full turgor (i.e. that
leaves with thicker palisade would have more negative Wo

p) and
that the spongy mesophyll would correlate positively with capaci-
tance. We found no evidence that the palisade thickness (calcu-
lated as either total or symplastic fraction) influenced leaf
osmotic potential at full turgor and in this respect our data reject
H3; however, the correlation of SMprop with C suggests that the
spongy mesophyll may affect leaf-level capacitance (Table 4;
Fig. 4b). The analysis of symplastic fractions (Table SI) yielded
no correlations between capacitance and SM, perhaps arguing for
a capacitive role of the apoplast of the SM. While neither of the
palisade measurements correlated with Wo

p, the correlation of
Palabs and the weak correlation of Palprop with Wtlp

p (P = 0.021
and P = 0.052, respectively; Table 4; Fig. 4a) could imply
osmotic adjustment in the palisade layer in response to dehydra-
tion. Thus, it is unlikely that the osmotic potential of the palisade
layer is significantly below that of the bulk leaf value when the
leaf is hydrated (above Wtlp

p ), but it is possible that solutes are
generated in, or moved into, the palisade in response to leaf dehy-
dration. These correlations disappeared when using the symplas-
tic fractions of Pal and Palprop, but the available degrees of
freedom were drastically reduced for this analysis.

Other correlations between anatomy and PV traits

The strong negative correlation between the proportional thick-
ness of the abaxial epidermis and both Wo

p and Wtlp
p (Fig. 4d; see

also Table S1 for the symplastically adjusted values) implies that
either leaves with low osmotic potentials benefit from having a
thicker abaxial epidermis or that the abaxial epidermis has a lower
Wo

p than the rest of the leaf (Mott, 2007). The latter hypothesis is
in line with the findings of Buckley et al. (2015) that the upper
and lower epidermal layers are hydraulically independent.
Stomata close in response to a threshold leaf water potential (Bro-
dribb et al., 2003), and thus by having an osmotic potential lower
than the leaf average, turgor in the abaxial epidermis would be
higher than the leaf average, enabling stomata to remain open
when the epidermis is close to bulk leaf Wtlp

p . This strategy would
be associated with anisohydric behaviors, which is consistent with
recent findings from the same trees (unpublished data).
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The absolute thickness of the spongy mesophyll appears to
play an influential role in determining leaf PV values (Tables 4,
S1). The strong correlation of SMprop with Wo

p (Fig. 4c) could
indicate that the SM has a higher osmotic potential (closer to 0)
than the other tissues and/or that the structure of the SM com-
pensates for the effects of low osmotic potential. The first possi-
bility (higher osmotic potential, closer to 0) is consistent with the
significant positive correlation between SMprop and C (Table 4;
Fig. 4b), although these results will have been influenced by two
samples with particularly low SMprop, and there is also no corre-
lation between the symplastic volume and C (Table S1). The sec-
ond point, that the structure of the spongy mesophyll
compensates for low (more negative) bulk leaf Wp, supports the
view that the spongy mesophyll offers a low resistance (high con-
ductance) pathway for lateral hydraulic flow, in contrast to the
palisade mesophyll (Wylie, 1946). Because water moves down a
water potential gradient, flow can be increased by increasing
either the gradient or the conductance according to the relation
F = ΔΨ9 K, where F is flow rate and K is conductance. A thick
spongy mesophyll, represented here without the cavity volume,
can have large lateral connectivity (Fig. S2a; Wylie, 1946), poten-
tially increasing hydraulic conductance within the leaf, and so
reducing the need for low osmotic potential required for main-
taining turgor with low water potentials.

Variance accounted for by individual and genus

The percentage of variance accounted for by ID (individual
tree within a genus; random effect) was low for most param-
eters, with the exception of SWC. By contrast, the variance
accounted for by genus was relatively high (Table 1), indicat-
ing that the variation within a genus is lower than the varia-
tion among genera, and hence that there is some
conservation of these parameters by taxonomic group. Bulk
elastic modulus had the lowest variance among genera, sug-
gesting convergence on a similar strategy regarding cell wall
rigidity; conversely, SWC had high variance, suggesting
divergence among genera in overall water content.

Wider implications and summary

There is mounting evidence that hydraulic processes are funda-
mental to understanding drought-induced tree mortality
(Anderegg et al., 2012; Hartmann et al., 2015; Rowland et al.,
2015a), and consequently there is increasing interest in how
knowledge of hydraulic responses could inform ecosystem
models. This study demonstrates that the six focal tropical tree
genera can perform osmotic adjustment in response to long-term
(decadal-scale) reductions in soil water availability over and above
those associated with seasonal variation, and that seasonal
osmotic adjustment does not act as an indicator of increased
resilience to long-term drought stress, and supports the hypothe-
sis that different leaf tissues respond to hydraulic demands in dif-
ferent ways. While these findings only cover six genera, they
suggest that, in contrast to those found in drier ecosystems
(Kubiske & Abrams, 1991; Tschaplinski et al., 1998; Mitchell

et al., 2008), maintaining osmotic homeostasis may be a more
successful drought resistance strategy than relying on osmotic
adjustment in tropical rainforest communities.

Results such as these are vital for understanding how we can
predict plant responses under future water stress in tropical
forests, for which further empirical understanding of both long-
and short-term responses to drought conditions is urgently
needed.
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