3,514 research outputs found
An oceanographer?s guide to GOCE and the geoid
International audienceA review is given of the geodetic concepts necessary for oceanographers to make use of satellite gravity data to define the geoid, and to interpret the resulting product. The geoid is defined, with particular attention to subtleties related to the representation of the permanent tide, and the way in which the geoid is represented in ocean models. The usual spherical harmonic description of the gravitational field is described, together with the concepts required to calculate a geoid from the spherical harmonic coefficients. A brief description is given of the measurement system in the GOCE satellite mission, scheduled for launch shortly, followed by a description of a reference ellipsoid with respect to which the geoid may be calculated. Finally, a recipe is given for calculation of the geoid relative to any chosen ellipsoid, given a set of spherical harmonic coefficients and defining constants
Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles
Bilayer lipid membranes [BLMs] are an essential component of all biological
systems, forming a functional barrier for cells and organelles from the
surrounding environment. The lipid molecules that form membranes contain both
permanent and induced dipoles, and an electric field can induce the formation
of pores when the transverse field is sufficiently strong (electroporation).
Here, a phenomenological free energy is constructed to model the response of a
BLM to a transverse static electric field. The model contains a continuum
description of the membrane dipoles and a coupling between the headgroup
dipoles and the membrane tilt. The membrane is found to become unstable through
buckling modes, which are weakly coupled to thickness fluctuations in the
membrane. The thickness fluctuations, along with the increase in interfacial
area produced by membrane buckling, increase the probability of localized
membrane breakdown, which may lead to pore formation. The instability is found
to depend strongly on the strength of the coupling between the dipolar
headgroups and the membrane tilt as well as the degree of dipolar ordering in
the membrane.Comment: 29 pages 8 fig
Determining North Atlantic meridional transport variability from pressure on the western boundary: a model investigation.
In this paper we investigate the possibility of determining North
Atlantic meridional transport variability using pressure on the western boundary, focusing on the 42degN latitude of the Halifax WAVE array. We start by
reviewing the theoretical foundations of this approach. Next we present results from a model analysis, both statistical and dynamic, that demonstrate
the feasibility of the approach. We consider how well we can quantify the meridional transport variability at 42degN given complete knowledge of bottom pressure across the basin, and to what degree this quantification is degraded by first ignoring the effect of intervening topography, and then by using only bottom pressure on the western boundary. We find that for periods of greater
than one year we can recover more than 90% of the variability of the main
overturning cell at 42degN using only the western boundary pressure, provided
we remove the depth-average boundary pressure signal. This signal arises from
a basin mode of bottom pressure variability, which has power at all timescales,
but that does not in truth have a meridional transport signal associated with
it, and from the geostrophic depth-independent compensation of the Ekman
transport. An additional benefit of the removal of the depth-average pressure is that this high-frequency Ekman signal, which is essentially noise as
far as monitoring the MOC for climatically important changes is concerned,
is clearly separated from other modes
Light Assisted Collisional Loss in a Rb Ultracold Optical Trap
We have studied hetero- and homonuclear excited state/ground state collisions
by loading both Rb and Rb into a far off resonant trap (FORT).
Because of the relatively weak confinement of the FORT, we expect the hyperfine
structure of the different isotopes to play a crucial role in the collision
rates. This dependence on hyperfine structure allows us to measure collisions
associated with long range interatomic potentials of different structure: such
as long and short ranged; or such as purely attractive, purely repulsive, or
mixed attractive and repulsive. We observe significantly different loss rates
for different excited state potentials. Additionally, we observe that some
collisional channels' loss rates are saturated at our operating intensities
(~15 mW/cm). These losses are important limitations in loading dual
isotope optical traps.Comment: about 8 pages, 5 figure
Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging
We present the theory, design, and realization of a polarization-insensitive
metamaterial absorber for terahertz frequencies. We derive
geometrical-independent conditions for effective medium absorbers in general,
and for resonant metamaterials specically. Our fabricated design reaches and
absorptivity of 78% at 1.145 ThzComment: 6 Pages, 5 figures; figures update
Numerical simulation of unconstrained cyclotron resonant maser emission
When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD
Terahertz metamaterials on free-standing highly-flexible polyimide substrates
We have fabricated resonant terahertz metamaterials on free standing
polyimide substrates. The low-loss polyimide substrates can be as thin as 5.5
micron yielding robust large-area metamaterials which are easily wrapped into
cylinders with a radius of a few millimeters. Our results provide a path
forward for creating multi-layer non-planar metamaterials at terahertz
frequencies.Comment: 4 pages, higher resolution figures available upon reques
Automated verification of shape and size properties via separation logic.
Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-definable shape predicates to allow programmers to describe a wide range of data structures with their associated size properties. To support automatic verification, we design a new entailment checking procedure that can handle well-founded inductive predicates using unfold/fold reasoning. We have proven the soundness and termination of our verification system, and have built a prototype system
- …