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Undulation instability in a bilayer lipid membrane due to electric field interaction

with lipid dipoles
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Bilayer lipid membranes !BLMs" are an essential component of all biological systems, forming a functional

barrier for cells and organelles from the surrounding environment. The lipid molecules that form membranes

contain both permanent and induced dipoles, and an electric field can induce the formation of pores when the

transverse field is sufficiently strong !electroporation". Here, a phenomenological free energy is constructed to

model the response of a BLM to a transverse static electric field. The model contains a continuum description

of the membrane dipoles and a coupling between the headgroup dipoles and the membrane tilt. The membrane

is found to become unstable through buckling modes, which are weakly coupled to thickness fluctuations in the

membrane. The thickness fluctuations, along with the increase in interfacial area produced by membrane

buckling, increase the probability of localized membrane breakdown, which may lead to pore formation. The

instability is found to depend strongly on the strength of the coupling between the dipolar headgroups and the

membrane tilt as well as the degree of dipolar ordering in the membrane.

DOI: 10.1103/PhysRevE.81.051909 PACS number!s": 87.50.cj, 87.16.ad, 46.70.Hg

I. INTRODUCTION

When amphiphilic lipid molecules are dissolved in solu-

tion, the molecules can self-assemble into a bilayer structure

with the hydrophilic headgroups of the molecule shielding

the hydrophobic hydrocarbon tails from the surrounding wa-

ter. Many biological processes and components that occur in

the cell depend on the membrane: membrane-bound proteins,

endocytosis or exocytosis, lipid rafts, and ion channels are

just a few examples #1$. The many different species of lipid

found in a cell membrane share the same general structure: a

polar headgroup attached to a nonpolar hydrocarbon tail re-

gion. When a bilayer lipid membrane !BLM" forms, the non-

polar tails make up the core of the membrane, with the di-

polar headgroups forming the membrane surface #2$. Both

parts of the molecule react to electric fields. When a strong

electric field is applied transversely across a membrane, re-

versible electric breakdown can occur. The breakdown is

characterized by an increase in the measured conductivity

due to the rapid increase in the transit of ions across the

membrane #3,4$. This increase in permeability is attributed to

the development of transbilayer pores #5$, which may close

upon removal of the electric field, allowing the membrane to

recover. This phenomenon has been termed electroporation

#6,7$.
The theoretical work on electroporation and electrical

breakdown can be viewed as belonging to two distinct

branches: one approach uses the Smoluchowski equation to

describe the evolution of a distribution of pores with an as-

sumed energy for pore formation #8–16$. A density of pores

are modeled drifting through radius space as function of time

generated by a source term including the effect of the field.

This method has been successful at predicting pore radii,

lifetimes, and densities but does not model the mechanism of
pore formation #7$. A different approach is required to under-
stand how pores form and what membrane properties inform

this process. The simplest approach is to coarse grain the

BLM to a continuum membrane driven unstable by an elec-

tric field. Early work by Crowley #17$ modeled the hydro-

carbon core of the membrane as a dielectric slab with finite

shear modulus and finite elastic compressibility but estimates

a critical transmembrane voltage an order of magnitude

larger than experimental values #7$. The model of Lewis #18$
also models the membrane as a dielectric slab but includes a

Maxwell stress tensor which relates the dielectric constant to

strain in the membrane, however also finds a critical trans-

membrane voltage larger than those experimentally reported

#6$, similar to Crowley.

These models neglect the fluid bilayer structure of the

membrane and thus neglect important mechanical properties

such as a vanishing shear modulus and the bending rigidity.

The Helfrich-Canham Hamiltonian and its variants #2$ are

frequently used to model conformational changes to the

membrane. Sens and Isambert #19$ adapted these methods

and considered the minimization of the difference between

the stressed and unstressed areas of a membrane in an elec-

tric field. The authors imposed a force from the electric field

on an undulating membrane and calculated the unstable un-

dulatory wavelength and corresponding growth rate although

the model used neglects any thickness variation in the mem-

brane. The stochastic thermal undulations proposed as a

mechanism for pore formation by Movileanu et al. #20$ are

hindered by a large energy barrier !91kBT" and neglect the

effect of the field on the membrane. Membranes are only nm

in thickness and the process of membrane breakdown under

electric fields occurs over short time scales, which makes

experimental study of pore formation difficult.

Molecular dynamics !MD" studies of membranes have

been used extensively to study the electrical behavior of*r.j.bingham01@leeds.ac.uk
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membranes #21–24$. These simulations provide molecular-
level detail on a picosecond time scale. However MD can
only simulate a very small area of membrane for a short
time. The transbilayer pores opened during electroporation
can last for up to ms #6$ before closing, which MD simula-
tions cannot capture. Experimental studies range from mea-
surement of the transmembrane current #25,26$ to conductiv-
ity measurements using salt-filled vesicles #27$. Recent
developments in video microscopy and fluorescence have en-
abled the direct visualization of giant unilamellar vesicles
exposed to an electric field #28–30$, in which pores can be
directly observed.

In this work, we develop a comprehensive mesoscopic
analytical approach, which includes a mechanical coupling
between the orientation of the dipole on the surface and the
membrane surface tilt. This should destabilize the membrane
as the headgroups seek to align with the field, rather than
shield the hydrophobic core of the membrane from the sur-
rounding fluid, which is their equilibrium position. As the
headgroups tilt, the membrane will tilt to try to restore the
equilibrium position, which can introduce an instability in
the membrane not noted previously in the literature. We
study this instability by performing a linear stability analysis
of the free energy. This perturbative approach will not cap-
ture the inherently discontinuous process of pore formation,
but will predict the onset of instability in the membrane. The
instability occurs through deformational modes involving
thickness fluctuations in the membrane, which increases the
probability of localized breakdown and therefore of pore for-
mation. Applying a field to the membrane breaks the reflec-
tion symmetry of the membrane therefore it is important we
include a description of the bilayer which allows each mono-
layer to be independently deformable.

In Sec. II we construct the free energy including terms
associated with mechanical deformation and introduce the
description of the dipolar headgroups. Section III presents
the qualitative analysis of the model, Sec. IV presents results
from numerical calculations, and we conclude the paper and
discuss possible future work in Sec. V.

II. MODEL

A. Geometry

We consider a planar bilayer lipid membrane suspended
horizontally in water with an electric field applied such that
the field is perpendicular to the unperturbed membrane sur-
face. The membrane is modeled as a dielectric fluid mem-
brane at zero tension with a nonzero area stretching modulus.
The generalized three-dimensional !3D" free energy is given
in Appendix A, but to illustrate the basic principal and obtain
analytically tractable solutions we assume a one-dimensional
modulation in the x direction !Fig. 1".

Here h! denote the positions of the upper !+" and lower
!−" membrane surfaces, t! is the thickness of the upper and

lower membrane leaflets, t0 is the unperturbed monolayer

thickness, and s is the displacement of the dividing surface

between the monolayers.

B. Conventional free energy

We construct a phenomenological free energy per unit

area. The first contribution is the energy associated with me-

chanical deformation of the membrane;

fm =
"b

2
!h+!

2 + h−!
2" +

#

2
!h+"

2 + h−"
2" +

"A

2
%& t+

t0

− 1− t0s!'2

+ & t−

t0

− 1+ t0s!'2( . !1"

Here "A is the area compressibility modulus, "b is the bend-

ing rigidity, # is the surface tension, and t0 is the initial

leaflet half-thickness. The primes represent differentiation

with respect to the x direction. These terms are equivalent to

those used by Huang in #31$ and have been adapted from the

Helfrich-Canham Hamiltonian. The surface tension in our

model is not equivalent to a frame tension, which acts in the

bilayer midplane. Instead, it restricts variation in interfacial

area of each leaflet separately and hence can describe peri-

staltic deformations. The area compressibility term allows

the two monolayers that form the bilayer to be independently

deformable #32$. This has a strong effect on the relaxational

dynamics of the membrane, but in the static case considered

here these deformations will equilibrate effectively instanta-

neously, meaning we can minimize over s at this stage with-

out loss of generality. #Note that the large bending modulus

!"b)10kbT" precludes renormalization of these elastic con-

stants #33$.$
We also include the dielectric energy fd:

fd =
$0

2
#$mEm

2 !h+ − h−" + $wE+
2!L − h+" + $wE−

2!h− − L"$ . !2"

Here $0 is the dielectric constant of the vacuum, Em is the

field in the membrane, and $m and $w are the dielectric con-

stants of the membrane and water, respectively. E! is the

field at the upper !+" and lower !−" membrane surface. L is

the upper and lower limit of the system. The form of Eq. !2"
implies the field will cause a uniform compressive force on

the membrane. This “electrostrictive” force has been found

to have a quadratic dependence on the applied transmem-

brane voltage and has a small effect !*1% fractional thick-

ness change" for the voltages used here #34–36$.

C. Dipolar headgroups

The dipolar headgroups of the lipids are defined by a

three-dimensional vector p;

p = pz + m = p cos!%"êz + m , !3"

where p= +p+, % is the angle the dipole makes with the z

direction, êz is the unit vector in the z direction, and m is a

FIG. 1. !a" An unperturbed bilayer and !b" the bilayer following

a deformation.
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vector representing the in-plane dipole moment. The value

used for p is the effective magnitude of the headgroup dipole

moment, calculated by Raudino and Mauzerall #37$, which

includes the screened charges and conformation of the head-

group.

In an unperturbed bilayer lipid membrane, the headgroup

of each phospholipid molecule lies at an average angle of %0

to the membrane normal, hinged about the uppermost carbon

atom #38$. This natural tilt of the headgroup arises from a

balance between the dipole-dipole interactions, the shape of

the molecule and the need to shield the nonpolar hydrocar-

bon chains from the water. We perturb about the equilibrium

position:

%! = %0! + &%!,

where

%0+ = %0,

%0− = ' ! %0 !A and B" .

The dipolar orientations between the two leaflets are

weakly coupled by the Coulomb interaction, which prefers

antiparallel orientations. In principle this degree of freedom

allows for rich phase behavior and dynamics. Since the di-

pole orientation is coupled to the applied field, the relative

orientation of the dipoles on the upper and lower membrane

leaflets will affect the membrane behavior under an electric

field. Here we consider only parallel and antiparallel orien-

tations. We refer to the case of the dipoles pointing in oppo-

site directions as antisymmetric !A" and the case where the

dipoles point in the same direction as symmetric !B", as

shown in Fig. 2.

Tilting the dipole relative to the membrane surface will

cost energy reflected in the following free energy per dipole;

fp =
"p!m+ · êx"

2

2
!%+ − %0+ + h+""2

+
"p!m− · êx"

2

2
!%− − %0− + h−""2

=
"p!m+ · êx"

2

2
!&%+ + h+""2 +

"p!m− · êx"
2

2
!&%− + h−""2. !4"

Here "p is the dipole-membrane coupling modulus and êx is

the unit vector in the x direction. This term is inspired in part

by the work of Lubensky, Chen, and MacKintosh in #39–41$
and explicitly penalizes change in dipole orientation relative

to the membrane surface tilt.

So far p and m have referred to a single dipole. To treat

larger membrane areas, we extend these to continuum vari-

ables: p becomes a dipole moment density p̃ !dipole moment

per unit area, with dimensions C m−1". We coarse grain m

into m̄,-m., the average orientation of dipoles within a

small area. To distinguish between changes in orientation of

the dipoles and changes in alignment within the coarse-

grained area, we separate m̄ into two components; a unit

vector m̂=m̄ / +m̄+, representing the average orientation and

an amplitude m̃= +m̄+, which represents the degree with

which dipoles within the given area point along m̂. If all the

dipoles within the area point along m̂, then m̃=1. If m̃=0

then the dipoles within the area are completely disordered.

As we are considering a one-dimensional modulation in the x

direction we can set m̂= êx and allow m̃ to vary. We write m̃

as an equilibrium value m̃0 and the deviation &m̃! from this

equilibrium value;

m̃! = m̃0 + &m̃!.

The equilibrium value m̃0 arises from a competition between

the dipole-dipole interactions and their thermal fluctuations.

We allow &m̃! to vary independently between the leaflets.

Changes in dipole alignment are penalized by a suscepti-

bility (m, leading to the free-energy density

f( =
(m

2
&m̃!

2 . !5"

A three-dimensional construction of f( is given in Appendix

A. As in Andelman et al. #42$ we include a term coupling the

dipole alignment with the surface curvature:

fc = −
#c

2
#!h+!"&m̃+" + !h−!"&m̃−"$ , !6"

where #c is the relevant modulus.

The final contribution to the free energy fE is a free en-

ergy of two uncoupled dipoles in an electric field. The free

energy per unit area is

fEA,B
= − p̃E+ cos %+ − p̃E− cos %− = / p̃E% cos!%0"

2
!&%+

2 − &%−
2" + sin!%0"!&%+ − &%−"( antisymmetric!A"case

p̃E% cos!%0"
2

!&%+
2 − &%−

2" + sin!%0"!&%+ + &%−"( symmetric!B"case, 0 !7"

FIG. 2. Symmetric and antisymmetric dipolar orientation be-

tween leaflets.
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where we have assumed equal fields in the upper and lower
water regions, E+=E−=E. Here we have also assumed that
the field acting on the dipoles is equivalent to the field at the
membrane surface, not the field in the membrane core, which
differs by two orders of magnitude. The dipoles are in an
aqueous environment which is very different from the hydro-
carbon core of the membrane #18$. The relative dielectric
constant of bulk water is )80, whereas for the membrane
interior it is )3. The field is assumed to only act between the
two membrane surfaces hence the effect of ionic screening
can be neglected. Here %! refers to an average tilt angle
within the region of coarse graining.

Now that the free energy has been constructed, it can be
subjected to a linear stability analysis. This will predict the
onset of a static instability in the membrane. In an experi-
mental system, the instability is complicated by the dynamics
of the surrounding fluid !likely to contain many ions, particu-
larly near the membrane surface" and by the dynamics of the

bilayer itself, which behaves as a two-dimensional fluid. To

capture the dynamical behavior of the instability predicted

by our model, we would need to include both the hydrody-

namic flows of the fluid and membrane #32,43$ and the

movement of charges in the solution #44,45$. These are both

nontrivial extensions due to the explicit definition of the di-

poles in our model Eqs. !4"–!7" and hence beyond the scope

of this paper.

III. QUALITATIVE ANALYSIS

A. Fluctuation free energy

After constructing the free energy we change variables to

modes that characterize the bilayer as a whole:

u = h+ − h− peristaltic mode,

h̄ = h+ + h− bilayer mode,

) = &%+ − &%− difference in dipole tilts,

* = &%+ + &%− mean dipole tilt.

From Eqs. !1"–!7", the free energy can then be expressed as

f =
"b

4
!u!

2 + h̄!
2" +

#

4
!u"

2 + h̄"
2" +

(m

2
!&m̃+

2 + &m̃−
2" +

"A

2t0
2&u2

2
+ 2t0

2 − 2t0u' +
$0$wE2

2
& $w

$m

− 1'u +
"pm̃0

2

4
!)2 + *2 + h̄"

2 + u"
2

+ 2h̄"* + 2u")" −
#c

4
#!h̄! + u!"&m̃+" + !h̄! − u!"&m̃−"$ + /+ p̃E& cos!%0"

2
)* + sin!%0"*' antisymmetric

+ p̃E& cos!%0"
2

)* + sin!%0")' symmetric. 0 !8"

The system has six remaining degrees of freedom; &m̃!, ),

*, u, and h̄. We minimize f over the dipolar tilts ) and *.

The minimized values of these tilts are given in Appendix C.

To quadratic order, the resulting free energy for the symmet-

ric and antisymmetric case is identical. Figure 3 shows the

dipole configurations for the bilayer and peristaltic modes.

The variables u and h̄ are expanded as small perturbations

about the flat state;

u = u0 + &u h̄ = h̄0 + &h̄ , !9"

where

!xu0 = 0 !xh̄0 = 0. !10"

The equilibrium value of the peristaltic mode u0 includes the

electrostrictive thinning implied by Eq. !2".
The free energy will then consist of f0!u0 , h̄0" and the

perturbation &f!&u ,&h̄". The flat state f0!u0 , h̄0" describes the

membrane after the application of an electric field in the

absence of undulations. We expand the perturbation to sec-

ond order in &h̄, &u, and &m!. The stability of the system is

determined by &f;

&f =
"b

4
!&h̄!

2 + &u!
2" +

#

4
!&u"

2 + &h̄"
2" +

(m

2
!&m̃+

2 + &m̃−
2"

+
"A

2t0
2&&u2

2
' +

"pm̃0
2

4
!&h̄"

2 + &u"
2"

−
#"p

3
m̃0

6!&u"
2 + &h̄"

2" − 2"p
2
m̃0

4p̃E cos!%0"&u"&h̄"$

4#"p
2
m̃0

4 − p̃2E2 cos2!%0"$

−
#c

4
#!&h̄! + &u!"&m̃+" + !&h̄! − &u!"&m̃−"$ , !11"

when &f +0 the system becomes unstable.

B. Fourier expansion

Upon &u and &h̄ decomposing into Fourier modes,

&u = 1
q

uqt0e−iq̂x/t0 &h̄ = 1
q

h̄qt0e−iq̂x/t0,
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s = 1
q

sqt0e−iq̂x/t0 &m̃! = 1
q

&m̃q
!

e−iq̂x/t0, !12"

where q̂ is a normalized Fourier wave number given by q̂

=qt0, The free-energy fluctuation is given by

&f =
L2

!2'"2& "b

2t0
4'1

q

&fq, !13"

where

&fq =
1

2
%q̂4 + &,s − ,p

-2

,p
2 − -2'q̂2(!+h̄q+2 + +uq+2" +

,A

2
!+uq+2"

+ ,p
2
q̂2

-

,p
2 − -2

!h̄q
!
uq + h̄quq

!" + ,(!+&m̃q
++2 + +&m̃q

−+2"

+
i,cq̂

3

2
#!h̄q

! + uq
!"&m̃q

+ + !h̄q
! − uq

!"&m̃q
−$ . !14"

and

,p =
"pm̃0

2t0
2

"b

, ,s =
#t0

2

"b

, ,A =
"At0

2

"b

,

,( =
(mt0

2

"b

, ,c =
#c

"b

, - =
p̃E cos!%0"t0

2

"b

.

The dimensionless parameters reference all energies to the

membrane bending energy "b. The dimensionless potential -
compares the strength of the field on the dipoles with the

membrane bending rigidity. For -.1, we would therefore

expect the system to be stable as the bending rigidity will be

much stronger than the field on the dipoles. We predict that

the system will only become unstable for -)O!1" where the

strength of the field on the dipoles can overcome the bending

rigidity. The effect of the field through - is regulated by ,p;

the two terms appear concurrently in Eq. !14". This is be-

cause ,p controls the way the membrane “feels” the field

through the dipole-membrane coupling Eq. !4".

C. Matrix representation

We rearrange Eq. !14" in the quadratic form

&fq =
1

2
vT · Mq · v, where v = !uq, h̄q, &m̃q

+, &m̃q
− " ,

!15"

where v is complex. The form and components of Mq are

given in Appendix B. We calculate the eigenvalues /q and

eigenvectors ê/ of Mq, which describe the eigenmodes of the

system. The membrane is unstable when any of the eigenval-

ues become negative. The associated eigenvectors ê/ deter-

mine how much the bilayer !h̄q", peristaltic !uq", and dipole

alignment !&mq
!" modes are involved in each eigenmode. If

the eigenvector is dominated by one of these pure modes, we

will refer to the eigenvalue as distinctly associated with the

pure mode that dominates its eigenmode. The matrix Mq can

also be used to calculate the fluctuation spectrum of the

modes;

-viv j. = 0!Mq
−1"ijkBT , !16"

where 0=2'2
/L2 is a constant related to the Fourier expan-

sion.

D. Analytical features

We can gain some qualitative information about the mem-

brane stability by analyzing the fluctuation free energy, Eq.

!14". The dimensionless parameters ,A, ,s, ,p, ,(, and ,c

represent the effects of the area compressibility, surface ten-

sion, dipole-membrane coupling, dipole alignment, and di-

pole alignment-membrane coupling on the free energy scaled

by the bending energy. The typical values for these ratios,

calculated using the parameters given in Table I, are given in

Table II. Since ,A11, the membrane is more susceptible to

bending than compression. The ratio ,p controls how the

membrane feels the applied electric field through the dipoles

as it contains both the dipole-membrane coupling modulus

"p and the average dipole alignment m̃0. Since this ratio ,p is

typically +1, this effect is dominated by membrane bending.

The ratio containing the surface tension, ,s, which using the

values of the parameters in Table I is +1. This will cause the

antisymmetric(A)

symmetric(B)

peristaltic( qu )modes

bilayer( )modeshq
-

bilayer( )modeshq
-

peristaltic( qu )modes

symmetric(B)

antisymmetric(A)

FIG. 3. The dipole orientations in an applied field. The field

applied to each membrane !-=0.03" is equivalent to a voltage drop

of 0.07 V across the membrane. The parameters used are given in

Table II. The dipole orientations were generated using the equations

for the minimums of ) and * found in Appendix C. The functional

form of the bilayer deformation modes u and h̄ are imposed in order

to display pure modes.
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membrane to bend with surface gradients rather than surface

curvature.

The model should be stable !&fq20" for a flat membrane

!q̂=0". For zero field !-=0" and in the limit q̂→0, the thick-

ness variations !peristaltic modes uq" are penalized by the

area compressibility ,A, while the bilayer modes vanish.

Since uq is stabilized against small changes in q̂, we expect

the instability to progress via bilayer !h̄q" modes. If we con-

sider only the bilayer modes, the instability occurs when the

term proportional to q̂2, which can be considered to be an

effective surface tension, changes sign:

-c = ,p& 1

1 + ,p/,s

'1/2

. !17"

The critical potential -c is therefore approximately propor-

tional to the ratio ,p #47$. The ratio ,p contains two impor-

tant independent parameters: "p, the strength of the dipole-

membrane coupling and the average dipole alignment m̃0.

The membrane is stabilized upon increasing either "p or m̃0.

Increasing "p “stiffens” the dipoles against movement away

from their equilibrium position, while increasing m̃0 in-

creases the proportion of dipoles within a membrane patch

that are aligned along the x axis and therefore constrained by

Eq. !6". As reducing m̃0 lowers -c, we can infer that an

instability is more likely to occur in a membrane region in

which the dipoles are disordered !i.e., m̃0 is smaller". The

generalized 3D version of this term considers the orientation

of the dipole in the complete plane rather than just the x

direction, which could describe two dimensional modula-

tions. We expect this to be energetically more costly at the

onset of instability #39$.
For the values used given in Table II !,s=0.20,,p

=0.23", -c)0.15 which is equivalent to a voltage drop of

0.22 V across the membrane. This simple qualitative esti-

mate gives values for the critical potential that are close to

the experimentally reported range of !0.2–1V" #6$. The inclu-

sion of the coupling between the bilayer and peristaltic

modes should raise the critical potential by transferring en-

ergy from the bilayer modes into the peristaltic modes.

IV. NUMERICAL CALCULATIONS

A. Parameters

All the parameters used to obtain these results are given in

Table I. The upper portion of the table contains the param-

eters that have been obtained from experimental studies,

whereas those in the lower portion are not accessible by cur-

rent experiments. Those parameters that cannot be experi-

mentally measured have either been estimated from physical

TABLE I. Parameters used for calculations.

Symbol Name Value Ref. Lipid

"A Area compressibility 0.14 J m−2 #1$ POPC

"b Bending rigidity 0.4310−19 J #46$ DMPC

# Surface tension 1.5310−3 J m−2 #31$ GMO

%0 Equilibrium dipole orientation 60° #38$ POPC

p̃ Dipole moment per unit area 1.1310−9 C m−1 #18$ POPC

t0 Monolayer thickness 2.5310−9 m #1$ POPC

"p Dipole-membrane coupling
a

1.5310−2 J m−2 #38$ POPC

(m Dipole alignment susceptibility
b

3.45310−2 J m−2

#c Dipole alignment-membrane coupling
c

0.0–0.6310−19 J

m̃0 Average degree of dipole alignment
d

0.3–0.4

a
The dipole-membrane coupling modulus, "p, was generated from the distribution of headgroup angles given

in #38$. The width of this distribution was assumed to be to be governed by one degree of freedom. This

estimate is then multiplied by the number of lipids per unit area, nlip!*1019 lipids /m2" #1$.
b
The dipole alignment susceptibility, (m, was estimated as (m*kbTnlip, due to the entropic cost of constrain-

ing the dipole alignment.
c
The functional form of ,c compares the dipole alignment-membrane coupling strength #c with the bending

rigidity "b. As the effect that Eq. !6" regulates is not seen experimentally, we can assume that #c+"b.

However the range of #c is chosen in order to provide examples where #c1"b as well as the physically

expected range.
d
The range of the dipolar alignment m̃0 used was judged to be a reasonable estimate of the degree of dipole

alignment in a membrane.

TABLE II. Dimensionless ratios according to measured data

from Table I.

Symbol Formula Value

,A

"At0
2

"b
21.3

,s

#t0
2

"b
0.2

,p

"pm̃0
2t0

2

"b
0.23–0.35

,(
(mt0

2

"b
5.4

,c

#c

"b
0–1.5

-
p̃E cos!%0"t0

2

"b
0–0.35
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reasoning !(m, #c, and m̃0" or extrapolated from simulation

results !"p". Of these constants, we expect only "p to have a

significant effect on the stability of the membrane due it

being present in Eq. !17". The estimate of "p comes from the

distribution of dipole angles obtained by Böckmann et al.

#38$. The authors perform MD simulations of lipid bilayers

and measure the angles formed between the dipole of the

lipid headgroup and the surface normal. This result has been

produced in other studies using different simulation method-

ologies #48,49$. We assume the width of this distribution is

governed by one degree of freedom and then calculate the

stiffness with which the dipole hinges around the equilibrium

position assuming it bends as a Hookean spring.

B. Eigenvalue stability

Figure 4 shows the eigenvalue associated with the bilayer

modes h̄q. As the rescaled potential - is increased, the eigen-

value /q
b decreases. For -=0.21 the eigenvalue has a signifi-

cant negative portion indicating that - has passed through

the point at which the membrane first becomes unstable. For

this unstable value of - the instability begins at q̂=0 and

reaches a lowest value at q̂=0.6, which corresponds to peak

to peak spacing of 26 nm. The eigenvalue associated with the

peristaltic undulations uq behaves identically to the eigen-

value for h̄q but has a y intercept of 2,A, hence this branch

will never become unstable for q̂! #0,1$. The membrane can

therefore become unstable only through the bilayer modes of

undulation as suggested in the previous section. While this is

not an obvious route to transmembrane pore formation, bi-

layer modes have been observed to play an important role in

MD simulations of electroporation #23$, as well as occurring

in the theoretical model of Sens and Isambert #19$.
The locus of instability as a function of q̂ and - is shown

for two values of ,p in Fig. 5!a". For ,p=0.23 the membrane

becomes unstable at the critical potential of -c=0.16. This

corresponds to a voltage drop across the membrane of

roughly 0.24 V, which is in the range of values !0.2–1 V" for

the onset of electroporation seen in both experiments #28$
and simulations #22$. This is slightly higher than the qualita-

tive estimate obtained in the previous section. The instability

in our model is likely to be relieved by a change in state of

the membrane. The formation of transmembrane pores can

achieve this by allowing ions to permeate through the sys-

tem, reducing the electric field across the membrane.

Increasing the dipole-membrane coupling strength ,p to

0.34 increases the critical potential to -c=0.22 !0.34V". This

is again slightly larger than the value predicted by Eq. !17"
!-c=0.20" but is also smaller than predicted by a linear in-

crease in -c with ,p.

C. Dipole alignment-membrane coupling

The effect of the dipole alignment-membrane coupling ,c

on the membrane stability is shown in Fig. 5!b". Increasing

,c does not affect the onset of the instability at long undula-

tory wavelengths !q̂=0", where the cubic dependence on the

wavelength !q̂3" of ,c in the free energy is outweighed by the

quadratic dependence !q̂2" of the terms which cause the in-

stability. The variation in the dipole alignment-membrane

coupling ,c does affect the shorter wavelength !q̂→1" struc-

ture of the instability, where the cubic and quadratic terms

become comparable. This will affect the behavior of the

membrane if a field larger than the critical value is applied

rapidly. Overall #c only weakly affects the stability of the

membrane, over the range #c=0–1.5"b.

Figure 5!b" shows the effect of the dipole alignment-

membrane coupling ,c on the stability of the membrane and

thus only the effect of ,c on the bilayer modes. The variation

in ,c affects the peristaltic !uq" modes differently, as shown

in Fig. 6. The peristaltic modes are stabilized at higher q̂ by

an increase in the dipole alignment-membrane coupling ,c,

whereas the bilayer modes are destabilized.

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 4. !Color online" The eigenvalue /q
b associated with the

bilayer undulations h̄q as a function of q̂. The shaded region is

unstable.
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FIG. 5. !Color online" The locus of instability as a function of q̂

and - for various values of !a" the dipole-membrane coupling ,p

and !b" the dipole alignment-membrane coupling ,c. The shaded

region is unstable.
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The dipole alignment-membrane coupling energy #Eq.

!6"$ couples the membrane deformation modes !h̄q and uq"
with the dipole alignment modes &mq

!. The eigenvalues /q
d

whose eigenvectors are dominated by the dipole alignment

modes &mq
! are shown in the lower section of Fig. 6. The

q̂=0 limit of these eigenvalues is governed by and propor-

tional to ,(, and the eigenvalues only deviate from this value

at larger q̂. Significant change in the eigenvalues can only be

seen for values of ,c11. These large values of ,c are un-

likely to be physically realizable as they require #c)O!"b".
The magnitude of #c cannot be measured directly by current

experiment. However as the degree of dipole alignment is

observed to have little correlation with membrane bending

#49,50$ it is fair to assume #c."b.

For the &m+- and &m−-dominated eigenvectors, the corre-

sponding eigenvalues /q
d are degenerate at q̂=0 and then

separate as q̂ increases. Increasing the strength of the dipole

alignment-membrane coupling ,c increases the amount by

which these eigenvalues deviate. The corresponding eigen-

vectors are not associated with &m+ and &m− independently,

but rather with both modes equally; however the more stable

eigenvalue has a slight contribution from the bilayer mode

h̄q, whereas the less stable eigenvalue has a slight contribu-

tion from the peristaltic modes uq. The difference between

these modes explains why the eigenvalues associated with

the bilayer and peristaltic modes react differently to increases

in ,c

D. Fluctuation spectrum

Whereas the variation in ,c has a small effect on the

overall stability of the membrane, the interaction of ,p with

the fluctuation modes provides a test of the model. The fluc-

tuation spectrum of the modes can be calculated using Eq.

!16". As expected, the fluctuations of the bilayer modes are

much larger in magnitude than the peristaltic modes. This is

because the peristaltic modes are dominated by the strong

stretching modulus, ,A. For small ,A the fluctuations of the

peristaltic modes grow to match the fluctuations of the bi-

layer modes. For zero applied field -+h̄q+2.*1 / !q̂4+,sq̂
2"

as expected for a flat membrane #2$. The ratio of fluc-

tuations of the bilayer modes at -=0.15 to -=0.0,

-+h̄q+2.-=0.15 / -+h̄q+2.-=0.0, is displayed in Fig. 7 for various val-

ues of the dipole-membrane coupling strength ,p, showing

that the application of a field increases the magnitude of the

fluctuations. Conversely, the dipole-membrane coupling ,p

stiffens the membrane and reduces the fluctuations as re-

flected in Fig. 7.

E. Eigenvector composition

Figure 8 shows the unstable eigenvalue and the associated

normalized eigenvector. For zero applied field, ê/ · êh̄=1 and

ê/ · êu=0, where êh̄ and êu are the unit vectors representing

the pure modes h̄q and uq, respectively, hence the eigenvalue

is associated only with the bilayer modes. For -1-c the

amplitudes of the eigenvector components vary with q̂ and

the contribution from the peristaltic mode ê/ · êq
u increases

due to the coupling term present in Eq. !14". This term has a

similar field dependence to the effective surface tension term

present in Eq. !14" which induces the instability, so the

FIG. 6. !Color online" The eigenvalues for both the peristaltic

and bilayer modes !upper panel" and the dipole modes !lower panel"
as functions of q̂. As ,c is increased at constant -!=0.21", the

bilayer and peristaltic modes react differently. The lower branch of

the bilayer modes becomes stable for q̂11. The dipolar modes

show little difference for field strengths above or below the critical

field strength !-c=0.16" but respond strongly to changes in the

dipole alignment-membrane coupling ,p. As q̂ is increased, the di-

polar modes deviate from their initial value, the direction deter-

mined by their weak association with either the bilayer modes h̄q or

the peristaltic modes uq.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

FIG. 7. !Color online" The ratio between the fluctuations of the

bilayer !h̄q" modes at -=0.15 to -=0 as a function of q̂.
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eigenvector mixing increases dramatically for -1-c. The

change in the eigenvector components is small compared

with the initial composition, therefore we can consider the

eigenvalue as distinctly associated the bilayer modes. This

behavior is mirrored in the eigenvalues of the pure peristaltic

modes, with the bilayer mode contribution !ê/ · êh̄" increasing

slightly for -1-c and increasing q̂.

V. DISCUSSION AND SUMMARY

We have constructed a model of a planar membrane in an

electric field, which contains an explicit coupling between

the orientation of the dipolar lipid headgroups and the mem-

brane shape, thus coupling the application of the field to the

membrane shape in a way not seen previously in the litera-

ture. The phenomenological model contains only harmonic

terms which are subjected to a linear stability analysis. This

model becomes unstable as the applied field is increased,

with a critical potential that matches those seen in experi-

ment and simulation #7$. A simple formula #Eq. !17"$ has

been found that gives a reasonable estimate of the critical

potential related to a minimal number of model parameters,

which is useful as decreasing the number of parameters used

decreases possible sources of error. The instability depends

strongly on m̃0, the average alignment in a membrane patch,

with the instability occurring for smaller fields for disordered

membranes of smaller m̃0. As dipole alignment will vary

dynamically in a physical system, the membrane is more

likely to become unstable in disordered patches. This means

the model captures some of the stochastic nature of mem-

brane breakdown and pore formation. The instability also

depends strongly on "p, the strength of the coupling between

the dipolar headgroups and the membrane core. This is likely

dependent on the combination of lipids in the bilayer. Since

variations in m̃0 or "p have a significant effect on the critical

potential -c, these would be good parameters with which to

test the model.

Because the process of membrane breakdown requires a

rupture to form in the membrane, it cannot be fully modeled

by any continuum theory. Despite this, the instability studied

in this work can be linked with the formation of defects

within the membrane and therefore the formation of trans-

membrane pores. From Fig. 8, the unstable eigenvector

shows that the instability is dominated by the bilayer modes

but approximately 2.5% of the instability involves the peri-

staltic modes. This induces a periodic thinning which desta-

bilizes the membrane. Evans et al. #51$ found using micropi-

pette aspiration that a membrane can only support thickness

changes of *4% before rupture. To induce a fractional thick-

ness change of this magnitude using the peristaltic undula-

tions produced by the instability requires the bilayer modes

to have an amplitude of 6 nm. This is above the size that

would be produced spontaneously by thermal fluctuations,

but after the application of an electric field, the bilayer

modes become unstable and this amplitude could be

achieved. A membrane defect is then more likely to form at

the troughs of the peristaltic undulations, where the mem-

brane is thinnest. This defect could then go on to form a pore

or rupture the entire bilayer. The most unstable undulation

wavelength is 26 nm !Fig. 4", comparable with the average

pore-pore separation reported in #52$, consistent with this

hypothesis.

The parameters "p and #c, both unique to this model,

provide opportunities to make predictions and test this

model. An obvious extension to the model would be to allow

for the full rotation of the dipole distribution, which could

lead to nontrivial pattern formation #39–41$. Our calculations

only calculate the static instability. To fully model the dy-

namical behavior of the instability predicted in this work, we

would need to include both the hydrodynamic flows of the

fluid and membrane #32,43$ and the movement of charges in

the solution #44,45$. Coupling hydrodynamic flows to the

movement of the membrane would be expected to push the

instability to smaller wavelengths !larger q̂" #53$.
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APPENDIX A: 3D FREE ENERGY

The general 3D form of the free energy of membrane

deformation;

fm =
"b

2
#!"2h+"2 + !"2h−"2$ +

#

2
#!"h+"2 + !"h−"2$

+
"A

2
%& t+

t0

− 1− t0"
2s'2

+ & t−

t0

− 1+ t0"
2s'2( .

!A1"

For the free energy associated with the dipole surface cou-

pling fp

FIG. 8. !Color online" The unstable eigenvalue and correspond-

ing eigenvector ê/ as a function of q̂. ê/ · êh̄ and ê/ · êu are the con-

tributions to ê/ of the bilayer and peristaltic modes, respectively.
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fp =
"p

2
22#!p̂+

! − p̂+" · n̂$+p̂+ · "ĥ++ − #p̂+ · !"h+ − "h0+"$+p̂"++32

+ 2#!p̂−
! − p̂−" · n̂$+p̂− · "ĥ−+ − #p̂− · !"h− − "h0−"$+p̂"−+323 ,

!A2"

where

p" = p̂ − !p̂ · n̂"n̂

and the hatted variables are normalized. h0! is the initial

surface gradient and p! is the perturbed dipole vector.

fc is the free energy of the dipole alignment-membrane

coupling;

fc =
#c

2
#!"2h+ " · p̂+" + !"2h− " · p̂−"$ . !A3"

f( is the energy punishing dipole alignment;

f( =
(m

2
#!p̂

"+
! − p̂"+"2 + !p̂

"−
! − p̂"−"2$ . !A4"

fd has the same functional form but is integrated over three

directions instead of two.

APPENDIX B: MATRIX REPRESENTATION

The matrix constructed for Eq. !15" is given by

Mq =/
M11 0 M13 0 0 M16 0 − M16

0 M11 0 M13 − M16 0 M16 0

M13 0 M33 0 0 M16 0 M16

0 M13 0 M33 − M16 0 − M16 0

0 − M16 0 − M16 M55 0 0 0

M16 0 M16 0 0 M55 0 0

0 M16 0 − M16 0 0 M55 0

− M16 0 M16 0 0 0 0 M55

0 , !B1"

where

M11 = q̂4 + &,s − ,p

-2

,p
2 − -2'q̂2 + ,A M16 = ,cq̂

3,

M13 = ,p
2
q̂2

-

,p
2 − -2

M55 = 2,(,

M33 = q̂4 + &,s − ,p

-2

,p
2 − -2'q̂2.

The vector vq multiplying the matrix Mq consists of the real

and imaginary parts of the modes h̄q, uq, and &m̃q
!;

v = #!uq"r, !uq"i, !h̄q"r, !h̄q"i, !&m̃q
+"r, !&m̃q

+"i, !&m̃q
−"r, !&m̃q

−"i$ .

!B2"

APPENDIX C: THE MINIMIZED VALUES

!min, "min and sq min

The minimized values of *, ), and sq are given by

&*

)
'

A

=
1

,p
2 − -2& ,p-u" + 2-2 tan!%0" − ,p

2
h̄"

,p-h̄" − 2,p- tan!%0" − ,p
2
u"
'

!C1"

or

&*

)
'

B

=
1

,p
2 − -2&,p-u" − 2,p- tan!%0" − ,p

2
h̄"

,p-h̄" + 2-2 tan!%0" − ,p
2
u"
'

!C2"

and

sq min =
h̄q

2!1 − q̂2"
. !C3"

#1$ B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P.

Walter, Molecular Biology of the Cell !Garland Science, New

York, 2002".
#2$ U. Seifert, Adv. Phys. 46, 13 !1997".

#3$ R. Stämpfli, An. Acad. Bras. Cienc. 30, 57 !1958".
#4$ E. Neumann and K. Rosenheck, J. Membr. Biol. 10, 279

!1972".
#5$ I. G. Abiror, V. B. Arakelyan, L. V. Chernomordik, Yu.

BINGHAM, OLMSTED, AND SMYE PHYSICAL REVIEW E 81, 051909 !2010"

051909-10

http://dx.doi.org/10.1007/BF01867861
http://dx.doi.org/10.1080/00018739700101488
http://dx.doi.org/10.1007/BF01867861


A. Chizmadzhev, V. F. Pastushenko, and M. R. Tarasevich,

Bioelectrochem. Bioenerg. 6, 37 !1979".
#6$ J. Weaver, IEEE Trans. Dielectr. Electr. Insul. 10, 754 !2003".
#7$ C. Chen, S. Smye, M. Robinson, and J. Evans, Med. Biol. Eng.

Comput. 44, 5 !2006".
#8$ K. T. Powell and J. C. Weaver, Bioelectrochem. Bioenerg. 15,

211 !1986".
#9$ A. Barnett and J. C. Weaver, Bioelectrochem. Bioenerg. 25,

163 !1991".
#10$ K. A. DeBruin and W. Krassowska, Biophys. J. 77, 1213

!1999".
#11$ R. P. Joshi, Q. Hu, R. Aly, K. H. Schoenbach, and H. P. Hjal-

marson, Phys. Rev. E 64, 011913 !2001".
#12$ R. P. Joshi, Q. Hu, K. H. Schoenbach, and H. P. Hjalmarson,

Phys. Rev. E 65, 041920 !2002".
#13$ J. C. Neu and W. Krassowska, Phys. Rev. E 67, 021915

!2003".
#14$ K. C. Smith, J. C. Neu, and W. Krassowska, Biophys. J. 86,

2813 !2004".
#15$ W. Krassowska and P. D. Filev, Biophys. J. 92, 404 !2007".
#16$ D. J. Bicout, F. Schmid, and E. Kats, Phys. Rev. E 73,

060101!R" !2006".
#17$ J. M. Crowley, Biophys. J. 13, 711 !1973".
#18$ T. Lewis, IEEE Trans. Dielectr. Electr. Insul. 10, 769 !2003".
#19$ P. Sens and H. Isambert, Phys. Rev. Lett. 88, 128102 !2002".
#20$ L. Movileanu, D. Popescu, S. Ion, and A. Popescu, Bull. Math.

Biol. 68, 1231 !2006".
#21$ D. P. Tieleman, S. J. Marrink, and H. J. C. Berendsen, Bio-

chim. Biophys. Acta, Rev. Biomembr. 1331, 235 !1997".
#22$ M. Tarek, Biophys. J. 88, 4045 !2005".
#23$ D. P. Tieleman, BMC Biochem. 5, 10 !2004".
#24$ A. A. Gurtovenko and I. Vattulainen, Biophys. J. 92, 1878

!2007".
#25$ M. Bier, W. Chen, T. R. Gowrishankar, R. D. Astumian, and R.

C. Lee, Phys. Rev. E 66, 062905 !2002".
#26$ K. C. Melikov, V. A. Frolov, A. Shcherbakov, A. V. Sam-

sonov, Y. A. Chizmadzhev, and L. V. Chernomordik, Biophys.

J. 80, 1829 !2001".
#27$ S. Kakorin, E. Redeker, and E. Neumann, Eur. Biophys. J. 27,

43 !1998".
#28$ E. Tekle, R. D. Astumian, W. A. Friauf, and P. B. Chock,

Biophys. J. 81, 960 !2001".
#29$ K. A. Riske and R. Dimova, Biophys. J. 88, 1143 !2005".
#30$ R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L.

Knorr, and R. Lipowsky, Soft Mater. 3, 817 !2007".
#31$ H. W. Huang, Biophys. J. 50, 1061 !1986".

#32$ U. Seifert and S. A. Langer, Europhys. Lett. 23, 71 !1993".
#33$ R. Goldstein, P. Nelson, T. Powers, and U. Seifert, J. Phys. II

6, 767 !1996".
#34$ E. Evans and S. Simon, Biophys. J. 15, 850 !1975".
#35$ J. Requena, D. Haydon, and S. Hladky, Biophys. J. 15, 77

!1975".
#36$ D. Andrews, E. Manev, and D. Haydon, Spec. Discuss. Fara-

day Soc. 1, 46 !1970".
#37$ A. Raudino and D. Mauzerall, Biophys. J. 50, 441 !1986".
#38$ R. A. Böckmann, B. L. de Groot, S. Kakorin, E. Neumann, and

H. Grubmüller, Biophys. J. 95, 1837 !2008".
#39$ C.-M. Chen, T. C. Lubensky, and F. C. MacKintosh, Phys.

Rev. E 51, 504 !1995".
#40$ C.-M. Chen and F. C. MacKintosh, Phys. Rev. E 53, 4933

!1996".
#41$ T. C. Lubensky and F. C. MacKintosh, Phys. Rev. Lett. 71,

1565 !1993".
#42$ D. Andelman, F. Brochard, and J.-F. Joanny, J. Chem. Phys.

86, 3673 !1987".
#43$ F. Brochard and J. Lennon, J. Phys. !Paris" 36, 1035 !1975".
#44$ D. Lacoste, M. C. Lagomarsino, and J. F. Joanny, EPL 77,

18006 !2007".
#45$ A. Ajdari, Phys. Rev. Lett. 75, 755 !1995".
#46$ P. Nelson, Biological Physics !Freeman, New York, 2004".
#47$ Although the linear dependence of -c on ,p is “softened” by

the terms within the square root, the limiting behavior of -c

with respect to ,p is still preserved: -c→4 as ,p→4 and

-c→0 as ,p→0. The limiting case of -c=,p can only occur

in the limit of infinite surface tension !,s→4" which means

the apparent singularity in Eq. !14" is always pre-empted by

the membrane becoming unstable. In the limit of zero surface

tension, !,s→0" the critical potential -c→0 as there is noth-

ing to resist the undulations introduced by the dipole-

membrane coupling #Eq. !6"$.
#48$ S. A. Pandit, D. Bostick, and M. L. Berkowitz, Biophys. J. 84,

3743 !2003".
#49$ L. Saiz and M. L. Klein, J. Chem. Phys. 116, 3052 !2002".
#50$ M. Kotulska, K. Kubica, S. Koronkiewicz, and S. Kalinowski,

Bioelectrochemistry 70, 64 !2007".
#51$ E. A. Evans, R. Waugh, and L. Melnik, Biophys. J. 16, 585

!1976".
#52$ S. Freeman, M. Wang, and J. Weaver, Biophys. J. 67, 42

!1994".
#53$ P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

!1977".

UNDULATION INSTABILITY IN A BILAYER LIPID… PHYSICAL REVIEW E 81, 051909 !2010"

051909-11

http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1016/0302-4598(79)85005-9
http://dx.doi.org/10.1109/TDEI.2003.1237325
http://dx.doi.org/10.1007/s11517-005-0020-2
http://dx.doi.org/10.1007/s11517-005-0020-2
http://dx.doi.org/10.1016/0302-4598(86)80029-0
http://dx.doi.org/10.1016/0302-4598(86)80029-0
http://dx.doi.org/10.1016/0302-4598(91)87001-W
http://dx.doi.org/10.1016/0302-4598(91)87001-W
http://dx.doi.org/10.1016/S0006-3495(99)76973-0
http://dx.doi.org/10.1016/S0006-3495(99)76973-0
http://dx.doi.org/10.1103/PhysRevE.64.011913
http://dx.doi.org/10.1103/PhysRevE.65.041920
http://dx.doi.org/10.1103/PhysRevE.67.021915
http://dx.doi.org/10.1103/PhysRevE.67.021915
http://dx.doi.org/10.1016/S0006-3495(04)74334-9
http://dx.doi.org/10.1016/S0006-3495(04)74334-9
http://dx.doi.org/10.1529/biophysj.106.094235
http://dx.doi.org/10.1103/PhysRevE.73.060101
http://dx.doi.org/10.1103/PhysRevE.73.060101
http://dx.doi.org/10.1016/S0006-3495(73)86017-5
http://dx.doi.org/10.1109/TDEI.2003.1237326
http://dx.doi.org/10.1103/PhysRevLett.88.128102
http://dx.doi.org/10.1007/s11538-006-9069-9
http://dx.doi.org/10.1007/s11538-006-9069-9
http://dx.doi.org/10.1016/S0304-4157(97)00008-7
http://dx.doi.org/10.1016/S0304-4157(97)00008-7
http://dx.doi.org/10.1529/biophysj.104.050617
http://dx.doi.org/10.1186/1471-2091-5-10
http://dx.doi.org/10.1529/biophysj.106.094797
http://dx.doi.org/10.1529/biophysj.106.094797
http://dx.doi.org/10.1103/PhysRevE.66.062905
http://dx.doi.org/10.1016/S0006-3495(01)76153-X
http://dx.doi.org/10.1016/S0006-3495(01)76153-X
http://dx.doi.org/10.1007/s002490050109
http://dx.doi.org/10.1007/s002490050109
http://dx.doi.org/10.1016/S0006-3495(01)75754-2
http://dx.doi.org/10.1529/biophysj.104.050310
http://dx.doi.org/10.1039/b703580b
http://dx.doi.org/10.1016/S0006-3495(86)83550-0
http://dx.doi.org/10.1209/0295-5075/23/1/012
http://dx.doi.org/10.1051/jp2:1996210
http://dx.doi.org/10.1051/jp2:1996210
http://dx.doi.org/10.1016/S0006-3495(75)85860-7
http://dx.doi.org/10.1016/S0006-3495(75)85793-6
http://dx.doi.org/10.1016/S0006-3495(75)85793-6
http://dx.doi.org/10.1039/sd9700100046
http://dx.doi.org/10.1039/sd9700100046
http://dx.doi.org/10.1016/S0006-3495(86)83480-4
http://dx.doi.org/10.1529/biophysj.108.129437
http://dx.doi.org/10.1103/PhysRevE.51.504
http://dx.doi.org/10.1103/PhysRevE.51.504
http://dx.doi.org/10.1103/PhysRevE.53.4933
http://dx.doi.org/10.1103/PhysRevE.53.4933
http://dx.doi.org/10.1103/PhysRevLett.71.1565
http://dx.doi.org/10.1103/PhysRevLett.71.1565
http://dx.doi.org/10.1063/1.451970
http://dx.doi.org/10.1063/1.451970
http://dx.doi.org/10.1051/jphys:0197500360110103500
http://dx.doi.org/10.1209/0295-5075/77/18006
http://dx.doi.org/10.1209/0295-5075/77/18006
http://dx.doi.org/10.1103/PhysRevLett.75.755
http://dx.doi.org/10.1016/S0006-3495(03)75102-9
http://dx.doi.org/10.1016/S0006-3495(03)75102-9
http://dx.doi.org/10.1063/1.1436077
http://dx.doi.org/10.1016/j.bioelechem.2006.03.017
http://dx.doi.org/10.1016/S0006-3495(76)85713-X
http://dx.doi.org/10.1016/S0006-3495(76)85713-X
http://dx.doi.org/10.1016/S0006-3495(94)80453-9
http://dx.doi.org/10.1016/S0006-3495(94)80453-9
http://dx.doi.org/10.1103/RevModPhys.49.435

