10 research outputs found

    MOESM1 of A novel Ffu fusion system for secretory expression of heterologous proteins in Escherichia coli

    No full text
    Additional file 1: Figure S1. Expression levels and solubility of targeted proteins (RVs, CARDS TX, VEGFR-2 and Omp85) fused with His tag. Lane 1, 2 shows the soluble fraction and inclusion bodies of His-fused RVs; lane 3,4 shows the soluble fraction and inclusion bodies of His-fused CARDS TX; lane 5, 6 shows the soluble fraction and inclusion bodies of His-fused VEGFR-2; lane 7, 8 shows the soluble fraction and inclusion bodies of His-fused Omp85. Keys:Soluble fractions (S) and inclusion bodies (ib). The conditions for expression of the proteins were: 0.5 mM IPTG at 25 ℃. Figure S2. The purification of fusion protein Ffu217-CARDS TX after osmotic shock. Keys: M presents protein molecular weight marker; lane 1 presents the soluble fraction of fusion protein Ffu217-CARDS TX, lane 2 presents the final purified Ffu217-CARDS TX. Figure S3. (A) NanoLC-MS/MS analysis of protein Ffu217-CARDS TX by chymotrypsin digestion; (B) NanoLC-MS/MS analysis of protein Ffu217-CARDS TX by trypsin digestion. Table S1. The primers used in this study

    Overlooked uneven progress across sustainable development goals at the global scale: Challenges and opportunities

    No full text
    Differences in progress across sustainable development goals (SDGs) are widespread globally; meanwhile, the rising call for prioritizing specific SDGs may exacerbate such gaps. Nevertheless, how these progress differences would influence global sustainable development has been long neglected. Here, we present the first quantitative assessment of SDGs’ progress differences globally by adopting the SDGs progress evenness index. Our results highlight that the uneven progress across SDGs has been a hindrance to sustainable development because (1) it is strongly associated with many public health risks (e.g., air pollution), social inequalities (e.g., gender inequality, modern slavery, wealth gap), and a reduction in life expectancy; (2) it is also associated with deforestation and habitat loss in terrestrial and marine ecosystems, increasing the challenges related to biodiversity conservation; (3) most countries with low average SDGs performance show lower progress evenness, which further hinders their fulfillment of SDGs; and (4) many countries with high average SDGs performance also showcase stagnation or even retrogression in progress evenness, which is partly ascribed to the antagonism between climate actions and other goals. These findings highlight that while setting SDGs priorities may be more realistic under the constraints of multiple global stressors, caution must be exercised to avoid new problems from intensifying uneven progress across goals. Moreover, our study reveals that the urgent needs regarding SDGs of different regions seem complementary, emphasizing that regional collaborations (e.g., demand-oriented carbon trading between SDGs poorly performed and well-performed countries) may promote sustainable development achievements at the global scale

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore