405 research outputs found

    Effect of Childhood Trauma on Adult Depression and Neuroendocrine Function: Sex-Specific Moderation by CRH Receptor 1 Gene

    Get PDF
    Variations of the corticotropin-releasing hormone receptor 1 (CRHR1) gene appear to moderate the development of depression after childhood trauma. Depression more frequently affects women than men. We examined sex differences in the effects of the CRHR1 gene on the relationship between childhood trauma and adult depression. We recruited 1,063 subjects from the waiting rooms of a public urban hospital. Childhood trauma exposure and symptoms of depression were assessed using dimensional rating scales. Subjects were genotyped for rs110402 within the CRHR1 gene. An independent sample of 78 subjects underwent clinical assessment, genotyping, and a dexamethasone/CRH test. The age range at recruitment was 18–77 years and 18–45, for the two studies respectively. In the hospital sample, the protective effect of the rs110402 A-allele against developing depression after childhood trauma was observed in men (N = 424), but not in women (N = 635). In the second sample, the rs110402 A-allele was associated with decreased cortisol response in the dexamethasone/CRH test only in men. In A-allele carriers with childhood trauma exposure women exhibited increased cortisol response compared men; there were no sex differences in A-allele carriers without trauma exposure. This effect may, however, not be related to gender differences per se, but to differences in the type of experienced abuse between men and women. CRHR × environment interactions in the hospital sample were observed with exposure to physical, but not sexual or emotional abuse. Physical abuse was the most common type of abuse in men in this cohort, while sexual abuse was most commonly suffered by women. Our results suggest that the CRHR1 gene may only moderate the effects of specific types of childhood trauma on depression. Gender differences in environmental exposures could thus be reflected in sex-specific CRHR1 × child abuse interactions

    Peripheral blood gene expression: it all boils down to the RNA collection tubes

    Get PDF
    Background: Gene expression profiling from peripheral blood is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the study was to compare genome-wide gene expression profiles obtained from the two widely used commercially available whole blood RNA collection systems - PAXgene and Tempus tubes. Comparisons of present call rates, variances, correlations and influence of globin reduction across the two collection systems was performed using in vivo glucocorticoid stimulation in 24 peripheral blood samples from three individuals. Results: RNA quality, yield and numbers of detected transcripts from the two RNA collection systems was comparable, with no significant differences between the tube types. Globin reduction resulted in a significant increase in present call rates (p = 8.17 × 10 -5 and p = 1.95 × 10 -3 in PAXgene and Tempus tubes respectively) and significant decrease in gene expression variance in both RNA collection tubes (p = 0.0025 and p = 0.041 in PAXgene and Tempus tubes respectively). Comparisons of glucocorticoid receptor-stimulated gene expression profiles between the two collection tube systems revealed an overlap of only 17 to 54%, depending on the stringency level of the statistical thresholds. This overlap increased by 1-8% when the RNA samples were processed to remove the globin mRNA. Conclusion: RNA obtained from PAXgene and Tempus tubes was comparable in terms of quality and yield, however, detectable gene expression changes after glucocorticoid receptor stimulation were distinct, with an overlap of only up to 46% between the two collection systems. This overlap increased to 54% when the samples were depleted of globin mRNA and drastically reduced to 17-18% when only gene expression differences with a fold change greater than 2.0 were assessed. These results indicate that gene expression profiles obtained from PAXgene and Tempus differ drastically and should not be analyzed together. These data suggest that researchers must exert caution while interpreting expression profiles obtained through different RNA collection tubes.</p

    Neurobiology of Self-Regulation: Longitudinal Influence of FKBP5 and Intimate Partner Violence on Emotional and Cognitive Development in Childhood.

    Get PDF
    OBJECTIVE::Self-regulation includes the volitional and nonvolitional regulation of emotional, cognitive, and physiological responses to stimulation. It develops from infancy through individual characteristics and the environment, with the stress hormone system as a central player. Accordingly, the authors hypothesized that genes involved in regulating the stress system, such as FK506 binding protein 5 (FKBP5), interact with early-life stress exposure, such as exposure to intimate partner violence (IPV), to predict self-regulation indicators and associated outcomes, including behavioral and learning problems in school. METHODS::Study participants were a longitudinal birth cohort of 910 children for whom FKBP5 genotypes were available and who were assessed for exposure to IPV during the first 2 years of life as well as multiple measures of self-regulation: stress-induced cortisol reactivity and fear-elicited emotional reactivity at 7, 15, and 24 months, executive function at 36, 48, and 60 months, and emotional and behavioral difficulties and reading and math achievement in school grades 1, 2, and 5. Data were analyzed using longitudinal clustering and ordinal logistic regression procedures followed by mixed linear modeling. RESULTS::Children with two copies of a risk FKBP5 haplotype and IPV exposure were significantly more likely to have a developmental trajectory characterized by high, prolonged stress-induced cortisol reactivity and emotional reactivity in toddlerhood, followed by low executive function at school entry and high emotional and behavior problems and low reading ability in the primary school grades. CONCLUSIONS::The interaction of FKBP5 and IPV affects the physiological response to stress early in life, with consequences for emotional and cognitive self-regulation. Targeting self-regulation may present an early intervention strategy for children facing genetic and environmental risk

    DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe \textquotedblDeepWAS\textquotedbl, a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS

    Dissecting the Association Between Inflammation, Metabolic Dysregulation, and Specific Depressive Symptoms: A Genetic Correlation and 2-Sample Mendelian Randomization Study.

    Get PDF
    IMPORTANCE: Observational studies highlight associations of C-reactive protein (CRP), a general marker of inflammation, and interleukin 6 (IL-6), a cytokine-stimulating CRP production, with individual depressive symptoms. However, it is unclear whether inflammatory activity is associated with individual depressive symptoms and to what extent metabolic dysregulation underlies the reported associations. OBJECTIVE: To explore the genetic overlap and associations between inflammatory activity, metabolic dysregulation, and individual depressive symptoms. GWAS DATA SOURCES: Genome-wide association study (GWAS) summary data of European individuals, including the following: CRP levels (204 402 individuals); 9 individual depressive symptoms (3 of which did not differentiate between underlying diametrically opposite symptoms [eg, insomnia and hypersomnia]) as measured with the Patient Health Questionnaire 9 (up to 117 907 individuals); summary statistics for major depression, including and excluding UK Biobank participants, resulting in sample sizes of 500 199 and up to 230 214 individuals, respectively; insomnia (up to 386 533 individuals); body mass index (BMI) (up to 322 154 individuals); and height (up to 253 280 individuals). DESIGN: In this genetic correlation and 2-sample mendelian randomization (MR) study, linkage disequilibrium score (LDSC) regression was applied to infer single-nucleotide variant-based heritability and genetic correlation estimates. Two-sample MR tested potential causal associations of genetic variants associated with CRP levels, IL-6 signaling, and BMI with depressive symptoms. The study dates were November 2019 to April 2020. RESULTS: Based on large GWAS data sources, genetic correlation analyses revealed consistent false discovery rate (FDR)-controlled associations (genetic correlation range, 0.152-0.362; FDR P = .006 to P < .001) between CRP levels and depressive symptoms that were similar in size to genetic correlations of BMI with depressive symptoms. Two-sample MR analyses suggested that genetic upregulation of IL-6 signaling was associated with suicidality (estimate [SE], 0.035 [0.010]; FDR plus Bonferroni correction P = .01), a finding that remained stable across statistical models and sensitivity analyses using alternative instrument selection strategies. Mendelian randomization analyses did not consistently show associations of higher CRP levels or IL-6 signaling with other depressive symptoms, but higher BMI was associated with anhedonia, tiredness, changes in appetite, and feelings of inadequacy. CONCLUSIONS AND RELEVANCE: This study reports coheritability between CRP levels and individual depressive symptoms, which may result from the potentially causal association of metabolic dysregulation with anhedonia, tiredness, changes in appetite, and feelings of inadequacy. The study also found that IL-6 signaling is associated with suicidality. These findings may have clinical implications, highlighting the potential of anti-inflammatory approaches, especially IL-6 blockade, as a putative strategy for suicide prevention.Wellcome Trust (grant code: 201486/Z/16/Z

    A functional variant in the serotonin receptor 7 gene (HTR7), rs7905446, is associated with good response to SSRIs in bipolar and unipolar depression.

    Get PDF
    Predicting antidepressant response has been a clinical challenge for mood disorder. Although several genome-wide association studies have suggested a number of genetic variants to be associated with antidepressant response, the sample sizes are small and the results are difficult to replicate. Previous animal studies have shown that knockout of the serotonin receptor 7 gene (HTR7) resulted in an antidepressant-like phenotype, suggesting it was important to antidepressant action. In this report, in the first stage, we used a cost-effective pooled-sequencing strategy to sequence the entire HTR7 gene and its regulatory regions to investigate the association of common variants in HTR7 and clinical response to four selective serotonin reuptake inhibitors (SSRIs: citalopram, paroxetine, fluoxetine and sertraline) in a retrospective cohort mainly consisting of subjects with bipolar disorder (n = 359). We found 80 single-nucleotide polymorphisms (SNPs) with false discovery rate &lt; 0.05 associated with response to paroxetine. Among the significant SNPs, rs7905446 (T/G), which is located at the promoter region, also showed nominal significance (P &lt; 0.05) in fluoxetine group. GG/TG genotypes for rs7905446 and female gender were associated with better response to two SSRIs (paroxetine and fluoxetine). In the second stage, we replicated this association in two independent prospective samples of SSRI-treated patients with major depressive disorder: the MARS (n = 253, P = 0.0169) and GENDEP studies (n = 432, P = 0.008). The GG/TG genotypes were consistently associated with response in all three samples. Functional study of rs7905446 showed greater activity of the G allele in regulating expression of HTR7. The G allele displayed higher luciferase activity in two neuronal-related cell lines, and estrogen treatment decreased the activity of only the G allele. Electrophoretic mobility shift assay suggested that the G allele interacted with CCAAT/enhancer-binding protein beta transcription factor (TF), while the T allele did not show any interaction with any TFs. Our results provided novel pharmacogenomic evidence to support the role of HTR7 in association with antidepressant response

    Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: Evidence from endocrine and gene expression studies

    Get PDF
    Context: Polymorphisms in the gene encoding the glucocorticoid receptor (GR) regulating co-chaperone FKBP5 have been shown to alter GR sensitivity and are associated with an increased risk to develop posttraumatic stress disorder (PTSD). Objective: To investigate interactions of the FKBP5 single-nucleotide polymorphism rs9296158 and PTSD symptoms on baseline cortisol level, low-dose dexamethasone suppression, and whole-blood gene expression. Design: Association of FKBP5 genotypes and PTSD symptoms with endocrine measures and genome-wide expression profiles. Setting: Waiting rooms of general medical and gynecological clinics of an urban hospital at Emory University. Participants: The 211 participants were primarily African American (90.05%) and of low socioeconomic status and had high rates of trauma and PTSD. Main Outcome Measures: Baseline and post-dexamethasone suppression cortisol measures and gene expression levels. Results: In our endocrine study, we found that only risk allele A carriers of rs9296158 showed GR supersensitivity with PTSD; in contrast, baseline cortisol levels were decreased in PTSD only in patients with the GG genotype. Expression of 183 transcripts was significantly correlated with PTSD symptoms after multiple testing corrections. When adding FKBP5 genotype and its interaction with PTSD symptoms, expression levels of an additional 32 genes were significantly regulated by the interaction term. Within these 32 genes, previously reported PTSD candidates were identified, including FKBP5 and the IL18 and STAT pathways. Significant overrepresentation of steroid hormone transcription factor binding sites within these 32 transcripts was observed, highlighting the fact that the earlier-described genotype and PTSDdependent differences in GR sensitivity could drive the observed gene expression pattern. Results were validated by reverse transcriptase-polymerase chain reaction and replicated in an independent sample (N=98). Conclusions: These data suggest that the inheritance of GR sensitivity-moderating FKBP5 polymorphisms can determine specific types of hypothalamic-pituitaryadrenal axis dysfunction within PTSD, which are also reflected in gene-expression changes of a subset of GRresponsive genes. Thus, these findings indicate that functional variants in FKBP5 are associated with biologically distinct subtypes of PTSD

    Polygenic prediction of the risk of perinatal depressive symptoms

    Get PDF
    Background Perinatal depression carries adverse effects on maternal health and child development, but genetic underpinnings remain unclear. We investigated the polygenic risk of perinatal depressive symptoms. Methods About 742 women from the prospective Prediction and Prevention of Pre-eclampsia and Intrauterine Growth Restriction cohort were genotyped and completed the Center for Epidemiologic Studies Depression scale 14 times during the prenatal period and twice up to 12 months postpartum. Polygenic risk scores for major depressive disorder, bipolar disorder, schizophrenia, and cross-disorder were calculated using multiplep-value thresholds. Results Polygenic risk scores for major depressive disorder, schizophrenia, and cross-disorder, but not bipolar disorder, were associated with higher prenatal and postpartum depressive symptoms (0.8%-1% increase per one standard deviation increase in polygenic risk scores). Prenatal depressive symptoms accounted for and mediated the associations between the polygenic risk scores and postpartum depressive symptoms (effect size proportions-mediated: 52.2%-88.0%). Further, the polygenic risk scores were associated with 1.24-1.45-fold odds to belong to the group displaying consistently high compared with consistently low depressive symptoms through out the prenatal and postpartum periods. Conclusions Polygenic risk scores for major depressive disorder, schizophrenia, and cross-disorder in non-perinatal populations generalize to perinatal depressive symptoms and may afford to identify women for timely preventive interventions.Peer reviewe

    The epigenetic clock and pubertal, neuroendocrine, psychiatric, and cognitive outcomes in adolescents

    Get PDF
    Abstract Background Molecular aging biomarkers, such as epigenetic age predictors, predict risk factors of premature aging, and morbidity/mortality more accurately than chronological age in middle-aged and elderly populations. Yet, it remains elusive if such biomarkers are associated with aging-related outcomes earlier in life when individuals begin to diverge in aging trajectories. We tested if the Horvath epigenetic age predictor is associated with pubertal, neuroendocrine, psychiatric, and cognitive aging-related outcomes in a sample of 239 adolescents, 11.0–13.2 years-old. Results Each year increase in epigenetic age acceleration (AA) was associated with 0.06 SD units higher weight-for-age, 0.08 SD units taller height-for-age, -0.09 SD units less missed from the expected adult height, 13 and 16% higher odds, respectively, for each stage increase in breast/genitals development on the Tanner Staging Questionnaire and pubertal stage on the Pubertal Development Scale, 4.2% higher salivary cortisol upon awakening, and 18 to 34% higher odds for internalizing and thought problems on the Child Behavior Checklist (p values <  0.045). AA was not significantly associated with cognition. Conclusions Our findings suggest that already in adolescence, AA is associated with physiological age acceleration, which may index risk of earlier aging. AA may identify individuals for preventive interventions decades before aging-related diseases become manifest
    corecore