222 research outputs found

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed

    Association mapping of spot blotch resistance in wild barley

    Get PDF
    Spot blotch, caused by Cochliobolus sativus, is an important foliar disease of barley. The disease has been controlled for over 40 years through the deployment of cultivars with durable resistance derived from the line NDB112. Pathotypes of C. sativus with virulence for the NDB112 resistance have been detected in Canada; thus, many commercial cultivars are vulnerable to spot blotch epidemics. To increase the diversity of spot blotch resistance in cultivated barley, we evaluated 318 diverse wild barley accessions comprising the Wild Barley Diversity Collection (WBDC) for reaction to C. sativus at the seedling stage and utilized an association mapping (AM) approach to identify and map resistance loci. A high frequency of resistance was found in the WBDC as 95% (302/318) of the accessions exhibited low infection responses. The WBDC was genotyped with 558 Diversity Array Technology (DArT®) and 2,878 single nucleotide polymorphism (SNP) markers and subjected to structure analysis before running the AM procedure. Thirteen QTL for spot blotch resistance were identified with DArT and SNP markers. These QTL were found on chromosomes 1H, 2H, 3H, 5H, and 7H and explained from 2.3 to 3.9% of the phenotypic variance. Nearly half of the identified QTL mapped to chromosome bins where spot blotch resistance loci were previously reported, offering some validation for the AM approach. The other QTL mapped to unique genomic regions and may represent new spot blotch resistance loci. This study demonstrates that AM is an effective technique for identifying and mapping QTL for disease resistance in a wild crop progenitor

    Combining genetical genomics and bulked segregant analysis-based differential expression: an approach to gene localization

    Get PDF
    Positional gene isolation in unsequenced species generally requires either a reference genome sequence or an inference of gene content based on conservation of synteny with a genomic model. In the large unsequenced genomes of the Triticeae cereals the latter, i.e. conservation of synteny with the rice and Brachypodium genomes, provides a powerful proxy for establishing local gene content and order. However, efficient exploitation of conservation of synteny requires ‘homology bridges’ between the model genome and the target region that contains a gene of interest. As effective homology bridges are generally the sequences of genetically mapped genes, increasing the density of these genes around a target locus is an important step in the process. We used bulked segregant analysis (BSA) of transcript abundance data to identify genes located in a specific region of the barley genome. The approach is valuable because only a relatively small proportion of barley genes are currently placed on a genetic map. We analyzed eQTL datasets from the reference Steptoe × Morex doubled haploid population and showed a strong association between differential gene expression and cis-regulation, with 83% of differentially expressed genes co-locating with their eQTL. We then performed BSA by assembling allele-specific pools based on the genotypes of individuals at the partial resistance QTL Rphq11. BSA identified a total of 411 genes as differentially expressed, including HvPHGPx, a gene previously identified as a promising candidate for Rphq11. The genetic location of 276 of these genes could be determined from both eQTL datasets and conservation of synteny, and 254 (92%) of these were located on the target chromosome. We conclude that the identification of differential expression by BSA constitutes a novel method to identify genes located in specific regions of interest. The datasets obtained from such studies provide a robust set of candidate genes for the analysis and serve as valuable resources for targeted marker development and comparative mapping with other grass species

    Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge

    Get PDF
    PURPOSE: The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. METHODS: Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and the error in selected white and gray matter regions. RESULTS: Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. CONCLUSION: Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria

    Expanding the clinical and immunological phenotypes of PAX1-deficient SCID and CID patients

    Get PDF
    Paired box 1 (PAX1) deficiency has been reported in a small number of patients diagnosed with otofaciocervical syndrome type 2 (OFCS2). We described six new patients who demonstrated variable clinical penetrance. Reduced transcriptional activity of pathogenic variants confirmed partial or complete PAX1 deficiency. Thymic aplasia and hypoplasia were associated with impaired T cell immunity. Corrective treatment was required in 4/6 patients. Hematopoietic stem cell transplantation resulted in poor immune reconstitution with absent naïve T cells, contrasting with the superior recovery of T cell immunity after thymus transplantation. Normal ex vivo differentiation of PAX1-deficient CD34+ cells into mature T cells demonstrated the absence of a hematopoietic cell-intrinsic defect. New overlapping features with DiGeorge syndrome included primary hypoparathyroidism (n = 5) and congenital heart defects (n = 2), in line with PAX1 expression during early embryogenesis. Our results highlight new features of PAX1 deficiency, which are relevant to improving early diagnosis and identifying patients requiring corrective treatment

    Stem rust resistance in wheat is suppressed by a subunit of the mediator complex

    Get PDF
    Stem rust is an important disease of wheat that can be controlled using resistance genes. The gene SuSr-D1 identified in cultivar 'Canthatch' suppresses stem rust resistance. SuSr-D1 mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identify SuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24h post inoculation in med15b.D mutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat. Stem rust is an important disease of wheat and resistance present in some cultivars can be suppressed by the SuSr-D1 locus. Here the authors show that SuSr-D1 encodes a subunit of the Mediator Complex and that nonsense mutations are sufficient to abolish suppression and confer stem rust resistance
    corecore