Zhang et al. BMC Neuroscience 2014, 15:117
http://www.biomedcentral.com/1471-2202/15/117

BMC
Neuroscience

RESEARCH ARTICLE Open Access

Brain iron redistribution in mesial temporal lobe
epilepsy: a susceptibility-weighted magnetic

resonance imaging study

Zhigiang Zhang'", Wei Liao'?, Boris Bernhardt®, Zhengge Wang', Kangjian Sun®, Fang Yang®, Yijun Liu®

and Guangming Lu'"

Abstract

resonance imaging (SW).

the clinical progression of epilepsy.

Background: The roles of iron in epilepsy and its pathophysiological significance are poorly understood, especially
whether iron levels are abnormal in subcortcal structures. This study aims to demonstrate whole-brain iron alterations
and its clinical relevancies in mesial temporal lobe epilepsy (MTLE) in vivo, using susceptibility-weighted magnetic

Methods: We studied 62 patients with mTLE and 62 healthy controls. Brain iron concentration was quantified using
SWI phase values. Voxel-wise analysis was carried out to compare iron levels between mTLE and controls, and to assess
the relationship between altered iron concentration and clinical parameters in mTLE.

Results: Patients with mTLE showed decreases of iron levels in the subcortical structures such as substantia nigra, red
nucleus, and basal ganglia. Conversely, iron levels were decreased in the cortex. Subcortical iron levels were negatively
correlated to those in the cortex. Moreover, cortical and basal ganglia iron levels were related to clinical variables
including epilepsy duration, age at seizures onset, and histories of precipitating factors.

Conclusions: Our SWI findings suggest a redistribution of iron between subcortical and cortical structures in mTLE.
The degree of redistribution is affected by both progression of epilepsy and precipitating factors. Investigation on brain
iron redistribution offers new insights into the pathogenesis of MTLE, and may be a potential biomarker for monitoring

Keywords: Brain iron, Mesial temporal lobe epilepsy, Susceptibility-weighted magnetic resonance imaging

Background

Iron is essential for many brain physiological processes
ranging from gene expression, neuronal development,
enzymatic reactions, dopamine synthesis and electron
transport [1-3]. Moreover, abnormal iron levels have been
found in many neurological disorders, such as Parkinson’s
disease [4], Alzheimer’s disease [5] and Restless Legs Syn-
drome [6], suggesting that the measurement of cerebral
iron concentration may be a potential biomarker to
advance the understanding, diagnosing, monitoring, and
treatment of diseases [2,7].
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There is initial evidence for a close link between al-
terations in brain iron and epilepsy [8-10]. In animal
models, injection of ferric or ferrous chloride into neo-
cortical regions or hippocampus has resulted in electro-
graphic and behavioral seizures [9]. The free radicals
generated by iron have been shown to attack cell mem-
branes by lipid peroxidation, leading to neuronal damage
and ultimately epileptic discharges [11]. In rat model of
epilepsy, up-regulated expression of ferritin, an iron stor-
age protein, has been observed in regions particularly
vulnerable to cell death [10]. In human patients, observa-
tional data on a direct link between iron and epileptogenis
is scarce. Increased iron burden, often subsequent to intra-
parenchymal hemorrhages and trauma, may be associated
with an elevated incidence of epilepsy [12,13]. Other indir-
ect evidence for a link between epilepsy and iron comes
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from work on resected tissue, where blood-brain barrier
leakage, which may cause local extravasation of blood and
release of iron from haemoglobin-containing blood cells,
may take place secondary to seizures [14].

The invasive nature of histological approaches to meas-
ure iron levels [15] precludes their use in epileptic patients
[16,17]. The recent development of magnetic resonance
imaging (MRI) techniques based on susceptibility-weighted
imaging (SWI), offers an accurate in vivo measurement of
brain iron deposition [7]. Indeed, phase images of SWI, a
high-resolution, 3D, and fully flow-compensated gradient
echo sequence, are sensitive to subvoxel magnetic inho-
mogeneities affected by iron in the forms of haemosiderin,
ferritin and deoxyhaemoglobin. It has been shown that
SWI and can measure iron levels on the order of just
1 mg/g tissue in vivo [7,18]. While previous studies have
used SWT to assess the iron alterations in non-blood brain
tissue (non-heme iron) and their clinical relevance in
Parkinson disease, Alzheimer Disease and multiple scle-
rosis [4,5,19]. There are to date no data on iron-related
SWI changes in epilepsy.

The purpose of the current study was to employ voxel-
based SWT analysis to investigate the topography of brain
iron alterations in mTLE. (1) Given that the previous stu-
dies mostly focus alterations of iron concentrations in
epilepsy in the cortical regions [8], the iron alterations in
subcortical structures in epilepsy thus still remain poorly
understood. In human brain, non-hemo iron is highly
concentrated in the globus pallidus (GP), substantia nigra
(SN) and red nucleus (RN), and is an essential cofactor in
the synthesis of dopamine [20]. Considering the important
roles of dopaminergic neurons and the subcortical struc-
tures played in mTLE [21,22], it is conceivable that the
subcortical iron may be associated with the process of epi-
lepsy. Hence we first assessed phase alterations in the sub-
cortical structures in mTLE, and particularly interested in
the relationship between subcortical and cortical phase al-
terations. (2) Considering that there is currently lack of
clinical significances of iron alterations in epilepsy, we
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correlated brain phase values with clinical variables of epi-
leptic patients, in order to explore the possible roles of
brain iron played in the pathogenesis and progression in
mTLE.

Methods

Participants

We recruited 62 consecutive adult patients with mTLE
who had received clinical treatments in Jinling Hospital.
Demographic and clinical data are detailed in the Table 1.
MTLE diagnosis and lateralization of the seizure focus
were determined by a comprehensive evaluation, includ-
ing seizure history and semiology, neurological examin-
ation, diagnostic MRI, and EEG records in all patients.
Patients were retrospectively selected if they satisfied the
following criteria: (i) All patients were young and middle-
aged adults. Patients younger than 18 yrs, or older than
50 yrs were excluded. (i) Patients with other identifiable
structural MRI abnormalities than hippocampal sclerosis,
such as cortical dysplasia, vascular malformation or tumor
were excluded. (iii) Pathogenesis of mTLE. Twenty-three
patients with prior history of febrile convulsion, 14 pa-
tients with intracranial infections and 25 patients without
pathogenic history were involved; patients with the other
pathogenesis, such as head trauma and poisoning were
excluded. Patients were compared to 62 age- and gender-
matched controls, recruited from the staff of Jinling Hos-
pital. Controls did not suffer from neurological or psychi-
atric disorders at the time of the study.

This study was approved by the Medical Ethics Commit-
tee in Jinling Hospital, Nanjing University School of Medi-
cine (Reference number: 2012G]JJ-055). All examinations
were carried out under the guidance of the Declaration of
Helsinki 1975. Written informed consent was obtained
from all the participants.

MRI data acquisition
MRI data were collected on a 3 T scanner (MAGNETOM
Trio, Siemens Healthcare, Erlangen, Germany) equipped

Table 1 Demographic and clinical information of patients with mTLE and healthy controls

Groups Men  Age Duration Onset age Seizure frequency  History = Hippocampal sclerosis
Controls (n=62) 34 27.5+8.1 (18-48) None None None None None
LTLE (n=31) 18 26.1+7.6 (18-48) 11.8+838 (1-29) 144 +89 (1-46) 3 (2-150) FC 13 LHS: 27
II: 8
NH: 10 BHS: 4
RTLE (n=31) 16 288+ 84 (18-48) 10.5+83 (1-38) 184 +98 (1-37) 5 (0.5-90) FC: 10 RHS: 30
II:6
NH: 15 BHS: 1

LTLE: left temporal lobe epilepsy; RTLE: right temporal lobe epilepsy.

Age, duration of epilepsy and age at onset are presented in mean + SD (range) years. Seizure frequency is given as median (range) of seizures/mo. II: intracranial

infection; FC: febrile convulsion; NH: no prior history.

Definitions: epilepsy duration: period from the time of the first independent seizures to the time of MRI scan; ages of seizures onset, ages at the first independent

seizures onset; and seizure frequency, seizures frequency over the recent one-year.
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with an eight-channel, phase-array head coil. Whole-brain
high-resolution SWI data including phase images were
obtained parallel to the anterior-posterior commissural
line using a 3-Dimensional gradient-echo sequence (TR/
TE: 28/20 ms; flip angle: 15° slices: 48; field of view: 240/
240 mm; matrix: 448 x 358 and oversampling: 16.7%).
SWI acquisition generated phase images, magnitude im-
ages, SWI with overlapping phase images on magnitude
images and SWI with minimal intensity project (mIP)
reconstruction [18]. These SWI images were all online
processed automatically on a workstation using the Syngo
VB17 software (Siemens Medical Solution), and phase
images were high-pass filtered (64 x 64 low spatial fre-
quency kernel). Moreover, we obtained high-resolution
T1-weighted anatomical images using a 3D Magnetization
Prepared Rapid Acquisition Gradient-echo (MPRAGE) se-
quence (TR/TE = 2300 ms/2.98 ms, FA = 9°, matrix =
256 x 256, FOV = 256 x 256 mm?, slice thickness = 1 mm).
Moreover, coronal T1 (TR/TE = 280/2.5 ms; FOV = 230 x
230 mm?, slice thickness = 4 mm, no gap, 18 slices) and
T2 FLAIR (TR/TE =8000/93 ms; FOV = 230 x 230 mm?,
slice thickness = 4 mm, no gap, 18 slices) images were col-
lected to measure hippocampal volume and detect hippo-
campal signal abnormalities.

Data preprocessing

Intensity preprocessing of the phase images

Firstly, the unwarpped and high-pass filtered [7,18] phase
images were linearly scaled to a phase value range of m to
-1. Subsequently, voxels with positive phase value (ie,
those ranging between 0 and 1) were removed. This step
was performed to exclusively measure iron content in the
brain, because it is well-known that iron in tissue has a
negative-phase effect [18]. Secondly, we automatically
identified brain veins showing dark signal intensity in the
MIP images individually, and replaced the corresponding
voxels in the phase images by mean global signal intensity
of the phase image. Following these preprocessing steps,
the phase values are believed to represent the content of
the non-hemo iron deposition [18].

Spatial preprocessing of the phase images

Spatial preprocessing of the phase images was performed
using SPM8 for Matlab. Data of patients with left-sided
mTLE and controls were left-right flipped. Phase images
of all subjects were linearly co-registered to their high-
resolution T1-weighted images, then the affine matrix by
normalizing the 3D anatomic images to a T1 template with
Montreal Neurological Institute (MNI) 305 coordination
was written to the phase images after intensity processing.
Normalized phase images were further re-sampled to a
resolution of 1.5x1.5x 1.5 mm, and smoothed with a
4 mm Full-width-at-half-maximum Gaussian kernel to in-
crease the signal-noise ratio (Figure 1). Prior to group
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analyses, subject-level voxel-wise phase value maps were
standardized into subject-level Z-score maps (i.e., by sub-
tracting the mean voxel-wise phase obtained for the entire
brain, and then dividing by the standard deviation). The
standardized phase can improve the subsequent statistical
analyses on group-level phase measures [23].

Voxel-based analyses of SWI phase values in mTLE

Phase images of all subjects were preprocessed for the re-
moval of heme-iron confounds and spatially normalized
to a standard stereotaxic space. Voxel-based analyses were
carried out using SPM8 (http://www.fil.ion.ucl.ac.uk/spm)
for Matlab (The Mathworks, Natick, MA).

Group comparison

We first observe the topological pattern of iron distribu-
tion in human brain by performing one-sample t-test on
SWI phase values of all subject groups. We subsequently
applied two-sample t-test on SWI phase values between
patients and controls to map the topological pattern of al-
tered brain iron in mTLE. The gray matter (GM) volume
of each subject extracted from voxel-based morphometric
analysis, was regressed voxel-wisely. Moreover, for valida-
ting the result of voxel-based analysis, we additionally per-
formed ROI-based comparison analyses (See Additional
file 1: Figure S1).

Correlation analysis between regions of iron changes

We performed a post-hoc correlation analysis to study
the relationship between the subcortical showing altered
phase values and rest of the brain. The bilateral RN and
SN, which showed most intensively decreased phase
values in patients with mTLE (see the Results for de-
tails), were combined and selected as seed region. A
voxel-based correlation analysis measuring the cova-
riance of phase values across subjects was conducted,
which can detect the regions whose phase values were
correlated with those in the seeds. The correlation pat-
terns of the patients and controls were compared using
a classic interaction linear model [24]. For each subject
group, the phase values in the regions of RN + SN (seed
region for correlation maps), cortex and basal ganglia
were extracted out. The region of cortex and basal gan-
glia were defined according to the correlation map of
the patients.

Subgroup assessment of effect of precipitating factors
Within the patient group, we applied a one-way analysis
of variance (ANOVA) to compare patients with a prior
history of febrile seizures (n = 23), patients with intracra-
nial infections (n=14), and patients with no overt his-
tory (n=15). The ANOVA analysis was assumed to find
the specific iron distribution patterns in mTLE with dif-
ferent precipitating factors.
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Figure 1 Flow chart of data processing.
Correlation analyses between the phase values and clinical Results

variables in mTLE

Voxel-based correlation analyses were performed to
highlight regions of correlation between SWI phase
values and the clinical variables epilepsy duration, age
at seizures onset, and seizure frequency, (as defined in
Table 1). Because epilepsy duration was negatively cor-
related with age at seizure onset (r=-0.607, p < 0.001)
in our patients, these two clinical variables were re-
garded as covariates each other in the voxel-based
correlation analyses. During the above voxel-based ana-
lyses, subject age and gender were included in the
model as nuisance covariates [25].

Correction for multiple comparisons

We used the false discovery rate (FDR, P < 0.05) proce-
dure to correct for multiple comparisons during all
voxel-based analyses [26].

Patterns of abnormal SWI-phase in mTLE relative to
controls

One-sample t-tests revealed topological patterns of
phase values. Apparently, the subcortical structures in-
cluding the globus pallidus (GP), substantia nigra (SN)
and red nucleus (RN) showed lower phase values in
contrast to the white matter and cortex. Analyzing
differences in global mean SWI phase, there was no
statistical difference (¢£=1.036, p=0.328) between pa-
tients (mean * std: -0.047 +0.009) and controls (-0.048 +
0.009). On the other hand, voxel-wise group compa-
risons decreases in SWI phase (i.e., increased iron con-
centration) in mTLE in widespead cortical networks
including frontal, temporal, and occipital cortical areas
(P <0.05, FDR correction), as well as increased phase
(i.e., decreased iron concentration) in subcortical struc-
tures such as the bilateral internal globus pallidus (GP1i),
putamen (PUT), RN and SN (Figure 2). ROI-based
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Figure 2 Comparison of the whole brain phase values between the patients with mTLE and healthy controls. A: One-sample t-test for
processed phase images in all subjects. It is apparent that the sub-cortical nuclei, including the globus pallidus, substantia nigra and red nucleus
showed lower phase values (or higher iron concentration) than the other brain structures. B: Two sample t-tests analyses revealed increased iron
concentration in mTLE in the neocortex, and decreased iron concentration in the subcortical structures. SWI phase value were decreased in
multiple cortical regions in mainly frontal, temporal and occipital lobes; increased SWI phase was found in sub-cortical structures including the
bilateral GPi, RN and SN. Finding have been thresholded at P < 0.05, FDR correction. The results are shown by overlying on MNI 305 template
image. Abbreviations: L: left; R: right; PUT: putamen; GPi: internal globus pallidus; SN: substantia nigra; RN: red nucleus.

t- score

comparison analyses repeated the VBA results (See
Additional file 1: Table S1).

Cortico-subcrotical iron level correlations

In mTLE, voxel-wise correlation analysis seeding from the
RN and SN confirmed and extended the patterns seen in
the group analysis. Indeed, we observed widespread positive
correlations of RN/SN with the other basal ganglia such as
PUT and GPj, and negative correlations with neocortical re-
gions. This result indicates that patients with high iron
levels in SN and RN also tend to have high iron levels in
PUT and GP, but low iron in cortical areas. This negative
correlation pattern was not found in controls (Figure 3 and
Additional file 1: Table S2).

Effect of precipitating factors

We observed different patterns of iron deposition al-
terations in patients with different precipitating factors
(Figure 4 and Table 2). Compared to the subgroup of
intracranial infection, the subgroups of febrile seizures
and no overt history both showed higher phase values
(i.e., lower iron level) in the bilateral PUT, RN and SN.
However, there were no significant alteration of phase
values when comparing subgroup of febrile seizures and
that of no overt history.

Effects of clinical variables

We observed a negative correlation between SWT phase in
cortical regions and a majority of subcortical structures
(including bilateral PUT, external globus pallidus [GPe],
SN and RN) to duration of epilepsy. These findings indi-
cate lower iron levels in patients with long-withstanding
seizures in these regions. In the GPi, on the other hand,
we observed a positive correlation, indicating progressive
iron increase.

Analyzing effects of seizure onset, subcortical finding
resembled the pattern seen in the previous analysis of
duration of epilepsy. Whereas, we did not observe any sig-
nificant correlation in the cortical regions. We did not ob-
serve any correlation to seizure frequency in the brain
regions as described above (Figure 5 and Table 3).

Discussion

Measuring the phase values of MRI-SWI, this study pro-
vided novel insights into the whole brain changes of iron
state in patients with mTLE in vivo. We observed in-
creased cortical brain iron deposition in the patients, to-
gether with decreases in the subcortical structures such as
the PUT, GP, SN and RN. Strikingly, the negative cor-
relation of phase values between the cortical and sub-
cortical structures suggests that these iron alterations in
the brain structures may result from redistribution of
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Figure 3 Correlation analysis of cortical and subcortical iron levels. Covariance analysis between cortical and subcortcial SWI phase values in
patients with mTLE (A) and healthy controls (B). Seeds were based on the peak coordinates of group difference in the SN and RN (see Figure 1).
In mTLE, seed SWI phase was positively correlated to multiple subcortical regions, and negatively correlated with neocortical regions. In healthy

SN: substantia nigra; RN: red nucleus.

controls, subcortical positive correlations were more restricted and there was no negative correlation between the seed regions and cortical
areas. Findings have been thresholded at P < 0.05, FDR correction. The results are shown by overlying on MNI 305 template image.The right
panels illustrate the differences of interregional correlation of phase values in patients and controls. (C): Interregional correlations between the
seed region (SN + RN) and the cortex. The phase values in the SN + RN was negatively correlated those in the cortex (r=-0.59, p =4.92 x 107 in
the patient group; but no significantly correlation was found in the control group (r=0.12, p=0.34). The correlations were different between the
patients and controls (t=-4.44, p < 0.0001). (D): Interregional correlations between the seed region (SN + RN) and the basal ganglia. The phase
values in the SN+ RN was positively correlated those in the basal gangila in both patient (r=0.66, p =4.92 X 10?) and control groups (r=0.85,
p=247x10"%. In the plots, phase values and regression lines are shown in red for the patients and in blue for controls. The correlations were
different between the patients and controls (t= 261, p < 0.05). The comparisons of correlations were performed using a classic interaction linear
model. Abbreviations: L: left; R: right; mTLE: mesial temporal lobe epilepsy; HC: healthy controls; PUT: putamen; GPi: internal globus pallidus;

brain iron stores in epilepsy. Clinical analyses further im-
plicate that the changes of cerebral iron deposition are
relevant with, and may play important roles in the pro-
gression and pathogensis of mTLE.

Pattern of altered brain iron distribution in mTLE

In cortical regions, we observed an increased cortical iron
deposition in mTLE, which is consistent with the findings
in previous animal and clinical research [10,12,14]. More-
over, our result for the first time provided the panorama
of increased iron in the diffuse cortical structures. In-
creased levels of brain iron have previously been inter-
preted to be a causative factor of epilepsy due to the
damaging effect of iron [8]. Increased iron can lead to lipid
peroxidation and then affects protein function, which
is associated with increased excitation (increased extra-
cellular glutamate) and decreased inhibition (decreased
function of GABA, receptor) of neurons in epilepsy
[1,3,6,8,27].

Conversely to the findings in the cortical regions, we ob-
served decreased iron levels in the basal ganglia subcor-
tical nuclei, including the bilateral PUT, GP, SN and RN in
the patients. This novel finding revealed that these sub-
cortical nuclei, which containing the highest levels of non-
hemo iron in the brain, are sensitive to the disturbance of

iron metabolism in epilepsy. Basal ganglia subcortical
nuclei may contribute to the patho-physiological process
of epilepsy through their role in unilateral dystonic pos-
turing seizure and inhibition of seizure activity [21,28,29].
SN and RN play important roles in propagation of seizure
activity [22]. Given that the subcortical structures are
densely innervated by dopaminergic pathways, and iron is
an essential cofactor in the synthesis of dopamine [20],
our findings may also be seen as suggestive of a link
between epilepsy and dopamine insufficiency. A previous
'8 E-Fluoro-L-DOPA PET study has found marked de-
creases in '® F-Fluoro-L-DOPA uptake in the SN and
PUT, suggesting impairment of dopamine activity in the
patients with mTLE [22]. In disorders associated with sub-
cortical iron deficiency, such as restless legs syndrome and
Attention-Deficit/Hyperactivity Disorder, decreased iron
in the subcortical nuclei have been shown to relate to al-
terations in dopamine production [30,31]. Moreover, in
degenerative disorders, such as Parkinson’s disease and
Alzeimer’s disease, increased subcortical iron levels have
also been correlated with abnormal dopamine function
[3-5]. Future study is needed to directly link MRI phase
changes with dopamine levels in epilepsy.

Our correlation analysis showed that iron alterations
in cortical structures in mTLE were negatively correlated
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Figure 4 Comparison of phase values among the patients with precipitating factors. One-way ANOVA analysis revealed difference iron
states between the patients with different pathogenesis (p < 0.05, FDR correction). Comparing with the subgroup of intracranial infection, the
subgroups of febrile convulsion (A) and no overt history (B) both showed increased phase values, i.e, decreased iron concentration(warm color) in the
PUT and SN. The difference of phase value between subgroups of FC and NH was located in the GPi (C). The results are shown by overlying on MNI
305 template image. Abbreviations: L: left; R: right; mTLE: PUT: putamen; GPi: internal globus pallidus; SN: substantia nigra; RN: red nucleus; II: intracranial
infection; FC: febrile convulsion; NH: no overt history.

Table 2 Results for group comparisons of phase values

Brain regions mTLE vs. HC FCuvs. Il NH vs. I FC vs. NH
X, y, z* (t) X, y, z¥ (t) X, y, z¥ (t) X, y, z¥ (t)
Corticalstructures L Front -18,44,15 (-3.22) None None None
R Front 38,51,18 (-4.98) None None None
L Temp -44,13,-10 (-3.63) None None None
R Temp 47,0, 14 (-3.87) None None None
L Occip -11,-94, 0 (-4.35) None None None
Subcortical structures L PUT -23,7,2 (433) -25,9,1 (3.55) -25,9,2 (447) None
R PUT 21,5,-2 (554) 31,-19,-2 3.74) 30,-17,4 (3.31) None
L GPi -25,-16, 4 (6.53) None None None
R GPi 25,-13,5(6.21) None None None
L GPe None None -15,2, 11 (3.85) -18, -4, 10 (-2.71)
R GPe None None None 19,-2, 10 2.72)
L SN -5,-20, 0 (4.56) -4,-19, -8 (2.98) -4,-19,-9 (347) None
R SN 6,-21,0 (447) 4,-20, 9 (345) 4,-20,-9 (3.22) None
L RN -12,-7,-5 (5.92) None None None
R RN 11,-3,-3(6.33) None None None

Abbreviations: mTLE mesial temporal lobe epilepsy, HC healthy controls, L left, R right, Front frontal lobe, Temp temporal lobe, Occip occipital lobe, PUT putamen,
GPi internal globus pallidus, GPe external globus pallidus, SN substantia nigra, RN red nucleus, FC febrile convulsion, /I intracranial infections, NH no prior history of
pathogenesis. Notes: *MNI coordinates.
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Figure 5 Voxel-based correlation analyses between the phase values and clinical variables in the patients with mTLE. \Warm color
denotes positive correlation, and cold color denotes negative correlation (p < 0.05, FDR correction). A: Correlation between phase values and

t-score

epilepsy duration. The cortical and subcortical structures both showed negative correlation, denotes that the iron concentrations in these brain
regions are positive correlated with epilepsy duration. B: Correlation between phase values and ages at seizures onset. Negative correlation was
found between the subcortical structures including the GPe, PUT, SN and RN. In the results of A and B, the nucleus of GPi showed dissociated
presence with the other subcortical nuclei. C: Correlation between phase values and seizures frequency. No meaningful region was found to have

correlation. The results are shown by overlying on MNI 305 template image. Abbreviations: L: left; R: right; PUT: putamen; GPi: internal globus
pallidus; GPe: external globus pallidus; SN: substantia nigra; RN: red nucleus.

with those in subcortical structures. These findings thus
provide further quantitative evidence that higher cortical
iron relates to lower subcortical iron, suggesting a cou-
pled subcortico-cortical iron redistribution in mTLE. A
similar pattern has been reported in a previous SWI
study on laminar necrosis with hypoxia, a finding inter-
preted as iron being transported from ganglia to cortical
structures [32]. Indeed, iron is taken up by the capillary
endothelial cells from the circulation via transferrin re-
ceptors and gets sequestered in the basal ganglia [33].
The iron can also be transported from the basal ganglia
along the axons to their sites of projection, where it may
accumulate [33,34]. Although future studies are needed
to provide more details on the exact directionality un-
derlying our findings in epilepsy, increased cortical iron
levels in mTLE may thus, at least in part, endogenously
stem from subcortical structures.

Alterations of brain iron and clinical relevancies

This study investigated the relationship of several clinical
factors to altered iron levels in mTLE. Although the previ-
ous basic researches have correlated the excessive iron to

the cause [8] or consequence [10,14] of epilepsy, our study
provided clinical evidence for interrogation of relationship
between iron and epilepsy. Firstly, the negative correlation
between the epilepsy duration and phase values indicated
that the altered brain iron is related to the progression of
epilepsy. Moreover, the negative correlation between the
ages at seizure onset and phase values in the subcortical
nuclei may indicate that the iron level in epileptic brain
may be affected by the ages of seizure onset.

Subgroup comparing results among the patients sug-
gested that the brain iron alterations might also be asso-
ciated with the pathogenesis of mTLE. Patients suffering
from intracranial infections showed relative high iron con-
centration in the PUT and RN in contrast to the other two
subgroups. It is conceivable that the alteration of iron levels
in intracranial infections may arise from iron-accumulation
by immune cells, e.g., microglial and astrocytes are known
to uptake iron more readily than neurons [10,35].

Methodological consideration and limitations
SWI is a mature and widely used MRI technique that
can examine the brain iron either in the form of heme
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Table 3 Correlation between phase values and clinical variables
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Brain regions Duration Onset Seizure frequency
X, y, z* (t) X, Y, z* (t) X, Y, z* (t)
Cortical structures L Front -33,62, 13 (-458) None None
R Front 48, 21, 23 (-4.04) None None
L Temp -36, 5, -30 (-4.07) None None
R Temp 45,6 -30 (-3.23) None None
L Occip -16,-101, 13 (-447) None None
R Occip 25,-101, 2 (-4.96) None None
Subcortical structures L PUT -30, -4, 1 (-642) -28,-11,4 (-6.72) None
R PUT 31,-4,0 (-6.32) 30,-7,-5 (-7.62) None
L GPi -21,-10,4 (3.18) -19,-8,5 (3.10) None
R GPi 22,-8,10 (3.46) 19,-7,7 (3.19) None
L GPe -13,6, 1 (-553) -15,6,2 (-5.58) None
R GPe -19, 2,15 (-3.93) 13,6, 1 (-5.35) None
L SN -12,-11,-3 (-12.72) -6,-17, -6 (-5.09) None
R SN 15,-13, 15 (-3.25) 7,-19,9 (-5.92) None
L RN -6,-19, -8 (-5.38) -12,-11,-3 (-4.35) None
RRN 7,-19,-6 (-5.29) 13,-11,-5 (-4.73) None

Abbreviations: L left, R right, Front frontal lobe, Temp temporal lobe, Occip occipital lobe, PUT putamen, GPi internal globus pallidus, GPe external globus pallidus,

SN substantia nigra, RN red nucleus, FC febrile convulsion, Il intracranial infections, NH no prior history of pathogenesis. Notes: *MNI coordinates.

iron, i.e., deoxyhaemoglobin, or non-heme iron, such as
ferritin and haemosiderin [7,18]. Only non-heme iron is
considered to be directly relevant to the iron metabolism
[7]. Many studies have demonstrated the correlation bet-
ween the SWI phase shifts and brain iron concentrations
in the human brain tissue [4,7]. In this work, we made a
few of improvements to data analysis. Firstly, we applied
voxel-based analysis for phase images instead of trad-
itional manual ROI based analysis, which can detect the
statistically significant results over the whole brain with
independence of any prior hypotheses. Secondly, based
on a vessel segmentation, we removed components of
positive phase related to veins prior to statistical ana-
lysis, a step that likely eliminated confounds related to
calcium and hemodeoxyhaemoglobin [7]. In addition, al-
though we performed a voxel-wise gray-matter volume
regression in statistical analysis, the morphological effect
on phase data might not be thoroughly excluded in the
cortical structures. Whereas, the selective appearances
of cortical changes in MRI susceptibility might indicate
a pathological phenotype in epilepsy, instead of the ar-
tifact effect from cortical atrophy.

Nevertheless, this study has several limitations. Firstly,
because of a diverse antiepileptic drug treatment in our
patients, we could not evaluate the possible effects of anti-
epileptic drugs on iron alterations in mTLE [36]. Secondly,
a future follow-up study is required to further clarify
the relationship between the iron state and treatment

outcomes, in particular with respect to seizure-freedom
following surgery. Thirdly, although no patient with an-
aemia was found, no available data of plasma ferritin levels
might be the defect of this study. Previous evidence has
suggested that the status of plasma ferritin may be cor-
related with seizures [37,38]. Fourth, data of left-sided
mTLE and matched controls were left-right flipped to
produce a homogenous right-sided mTLE dataset. While
this approach aimed at increasing statistical power in
comparing patients to controls, it may have introduced
some confounds with respect to physiological latera-
lization of iron deposition [25]. Finally, with the im-
provement of MRI technique, the most newly-developed
quantitative susceptibility mapping is more accurate than
SWT on assessment of brain iron content [39].

Conclusion

By measuring the phase values of the brain using
susceptibility-weighted MRI, this study revealed a
whole-brain pattern of iron alterations in mTLE. Besides
to the anticipated finding that the cortical structures
showed increased iron, we provide novel evidence show-
ing decreased iron in the subcortical regions in mTLE.
The negative correlation of iron concentrations in these
two areas might suggest iron redistribution in epileptic
brain. Clinical correlation analyses indicated that iron al-
terations are not only related to the clinical progression,
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but also to the precipitating factors. This study shed light
on the pathophysiological mechanisms of iron alteration
in mTLE, and provided a potential biomarker for studying

epilepsy.

Additional file

Additional file 1: Figure S1. Example of ROIs selections. Four ROIs,
including the frontal cortex (purple), GPi (green), RN (red) and SN (white)
ipsilateral to the epileptogenic side, were selected according to the VBA
results. Especially, the ROI drawing of the frontal cortex was carefully
performed to deliberately avoid the artifact at the interface between
cortex and the skull. The phase values in each ROI (drawn by 3 operators,
the values were averaged) were extracted from the patients and controls.
The values were compared between the patient and control groups
using two-sample t tests (Table S1). Table S1. Phase values in the ROIs.
Table S2. Across-subject correlation analyses of phase values seeding at
the RN+SN.
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