
1 

 

Quantitative Susceptibility Mapping:  

Report from the 2016 Reconstruction Challenge 

Christian Langkammer
1†

, Ferdinand Schweser
2†

, Karin Shmueli
3†

, Christian Kames
4
, Xu Li

5
, Li Guo

6
, Carlos Milovic

7
, Jinsuh 

Kim
8
, Hongjiang Wei

9
, Kristian Bredies

10
, Sagar Buch

11
, Yihao Guo

6
, Zhe Liu

12
, Jakob Meineke

13
, Alexander Rauscher

4
, José P. 

Marques
14

, Berkin Bilgic
15†

  

ABSTRACT  

Purpose: The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of 

various QSM algorithms to recover the underlying susceptibility from phase data faithfully. 

Methods: Gradient-echo images of a healthy volunteer acquired at 3 Tesla in a single orientation with 1.06 mm isotropic 

resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging 

algorithm on data acquired at 12 head orientations.  

Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. 

Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), 

high-frequency error norm (HFEN), and the error in selected white and grey matter regions.   

Results: Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency 

content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top ten maps in each 

category had similar error metrics but substantially different visual appearance.  

Conclusion: Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered 

from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for 

better numerical image quality criteria.  
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INTRODUCTION  

Quantitative susceptibility mapping (QSM) aims to determine a basic physical property (i.e. tissue magnetic susceptibility) in 

vivo that is highly sensitive to tissue molecular composition and disease-induced tissue damage (1–5). QSM solves an 

inverse field-to-source problem, calculating the underlying magnetic susceptibility distribution from gradient-echo (GRE) 

phase images. Early concepts for QSM have been introduced two decades ago (6–12) and more refined methods have been 

introduced recently to allow the calculation of susceptibility with reduced reconstruction artefacts from a single orientation 

in the clinical setting (13,14). The clinical value of QSM is currently being explored and holds great promise for vascular, 

inflammatory and neurodegenerative diseases of the brain (15–19). As such, the QSM field is rapidly developing, QSM is 

increasingly being used in clinical studies of neurological disorders, and applications outside the brain are being explored 

(20–24). The quantitative nature of the technique promises to provide biomarkers that allow the clinical monitoring of 

disease progression and treatment effects. However, especially considering the quantitative nature of QSM, clinical 

translation will require a thorough understanding of the reproducibility and accuracy of susceptibility measurements with 

QSM. Also, for a comparative assessment of QSM-based literature reports, it is important to understand how comparable 

susceptibility values are if they were reconstructed with different QSM algorithms. 

A variety of algorithms has been developed for the numerical solution of the field-to-source inverse problem at the heart of 

QSM. However, although QSM is supposed to yield a physical tissue property, susceptibility maps calculated with different 

algorithms from the same dataset can show substantial differences, as illustrated in a recent review by Wang and Liu (1). To 

systematically compare and quantitatively assess the many available algorithms, we implemented the first QSM 

reconstruction challenge in the context of the 4
th

 International Workshop on MRI Phase Contrast and Quantitative 

Susceptibility Mapping, held from September 26
th

 to 28
th

, 2016 at the Medical University of Graz, Austria 

(www.qsm2016.com). The primary goal of the challenge was to test the ability of various QSM algorithms to recover the 

underlying susceptibility distribution from a healthy volunteer’s phase data faithfully. The secondary goal was to provide a 

common reference dataset that would help benchmark not only existing QSM algorithms but also methods that would be 

developed in the future.  

The challenge was announced at the Electro-Magnetic Tissue Properties (EMTP) (formerly SWI) study group meeting at the 

2016 annual meeting of the International Society for Magnetic Resonance in Medicine (ISMRM) in Singapore on May 12
th

, 

2016. Data and instructions could be downloaded from the workshop website (qsm.neuroimaging.at) starting from May 

12
th

, 2016, and the deadline for a submission of reconstructed susceptibility maps was September 15
th

, 2016. The results of 

the evaluation of submitted maps were presented and discussed at the QSM workshop in Graz on September 27
th

, 2016. 

Additionally, the present report includes the input from the discussions in Graz and at the ISMRM EMTP study group 

meeting in Honolulu on April 26
th

, 2017.  

 

METHODS 

General considerations on input and reference data 

In the literature, evaluation of susceptibility mapping algorithms is frequently performed using numerical phantoms (25,26) 

or acquired phantom data (27–29). Most physical phantoms used have consisted of compartments filled with solutions or 

gels of different magnetic susceptibilities, i.e. regions of piece-wise constant magnetic susceptibility. Such geometries allow 

a near-perfect recovery of the underlying susceptibility distribution using regularization of the inverse problem with total 

(generalized) variation (TV/TGV) or morphological priors because the piece-wise constant constraints and priors exactly 

match the actual susceptibility distribution. Using a physical phantom would, therefore, put these types of algorithms at a 

competitive advantage compared to other algorithm types. Moreover, a piece-wise constant susceptibility distribution is 

not a realistic model of magnetic susceptibility in the brain.  

A limitation of numerical models is that contributions from sources other than isotropic bulk magnetic susceptibility such as 

chemical exchange effects (30), anisotropic susceptibility (31,32) and microstructure (33–36) are difficult to model because 

http://www.qsm2016.com/
http://qsm.neuroimaging.at/
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the magnitude of these effects in vivo is not yet completely understood. Furthermore, physiological noise, flow, and partial 

volume effects are difficult to model realistically. 

To address the shortcomings of physical phantoms and numerical models, in this challenge we decided to use a human 

susceptibility map measured in vivo as a reference. Attempting to take magnetic susceptibility anisotropy into account, we 

employed the susceptibility tensor imaging (STI) approach (37) to determine the reference map. STI reconstructs the 

susceptibility tensor distribution without any regularization or morphological priors. From the susceptibility tensor, it is 

possible to estimate the expected susceptibility distribution that would be measured with a single-angle susceptibility 

mapping technique. This effective susceptibility distribution was used as the reference susceptibility map in the challenge as 

described below. 

We decided to provide the reference susceptibility map to the contestants to reduce the potentially negative impact of sub-

optimal algorithm-specific parameter choices on the challenge outcome. The availability of the reference allowed the 

contestants to optimize algorithmic parameters properly and then submit the best scoring result they could achieve with 

their algorithm. 

Selection of the reference 

The candidates for gold standard susceptibility were either a COSMOS (27) susceptibility map, or 𝜒33 from the STI solution 

(37). The benefits of these two maps as reference susceptibility distributions include i) they are calculated without 

numerical regularization and, therefore, no spatial smoothing or incorporated prior information, and ii) high signal-to-noise 

ratio (SNR) since both maps are computed from joint processing of images acquired at 12 orientations of the head with 

respect to B0. 

COSMOS models susceptibility as a scalar, isotropic property, ignoring its orientation dependence. A COSMOS susceptibility 

map reflects the effective magnetic susceptibility averaged over all 12 orientations of the head. Therefore, we concluded 

that COSMOS susceptibility maps would not provide an accurate reference for single-angle susceptibility mapping with the 

head in the normal position, particularly in regions with anisotropic magnetic susceptibility, such as white matter. To 

mitigate this orientation bias, we chose 𝜒33 of the STI solution as the reference. Based on STI theory (37), the Fourier 

domain phase 𝚯(𝒌), when the main field lies along 𝑯 in the subject frame, is given by 

𝚯(𝒌) =
𝟏

𝟑
𝑯𝑻 ∙ 𝜲 ∙ 𝑯 − 𝑯 ∙ 𝒌

𝒌𝑻∙𝑿∙𝑯

𝒌𝟐      [1] 

where 𝒌 is a vector of all Fourier domain coordinates and 𝜲 is the susceptibility tensor in the subject frame and ()𝑻 denotes 

matrix transposition. When the acquisition is performed in the transverse plane relative to the subject coordinates, i.e. 

𝑯 = [0,0,1]𝑇, the signal equation becomes 

𝚯(𝒌) = (
1

3
−

𝑘𝑧
2

𝑘2) 𝜒33 −
𝑘𝑧

𝑘2 (𝑘𝑥 𝜒13 + 𝑘𝑦 𝜒23)    [2] 

The relationship commonly used in single-orientation QSM assumes that the terms with the off-diagonal tensor elements,  

𝜒13 and 𝜒23, are negligible: 

𝚯(𝒌) = (
1

3
−

𝑘𝑧
2

𝑘2) 𝜒33, = 𝐃 𝜒33,    [3] 

where 𝐃 is the dipole kernel in the Fourier domain. Equation [3] motivates the use of 𝜒33 as the reference susceptibility 

that gives rise to the observed phase signal.  

Data and source code 

MRI data were acquired in a healthy female volunteer (age 30) at a 3T system (Tim Trio, Siemens Healthcare GmbH, 

Erlangen, Germany) with Institutional Review Board approval from Massachusetts General Hospital. 



4 

 

The imaging data provided to the contestants as inputs for the susceptibility mapping included the following datasets:  

 3D gradient-echo magnitude and wrapped phase images acquired with axial slab orientation (and the head in the 

normal supine position). 

 A magnetization-prepared rapid gradient-echo (MPRAGE) image (38) matching the GRE volume because MPRAGE 

images are routinely acquired in clinical brain imaging studies and certain QSM algorithms use an MPRAGE image 

as an input, i.e. as prior information. 

 A background-field corrected tissue phase image. We used the Laplacian Boundary Value (LBV) method (39) after 

transmit phase removal by fitting and subtracting a 4
th

-order 3D-polynomial. LBV was used because it 

outperformed all other proposed background-field correction methods in a recent comparison study (40). This 

image was provided in an attempt to eliminate a potential variability in submitted susceptibility maps due to 

differences in background field removal techniques. However, as single-step QSM methods are designed to solve 

background-field removal and inversion problems simultaneously, those algorithms could use the unprocessed 

wrapped phase GRE images. 

 A brain mask obtained from the FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) Brain Extraction Tool (41) was also 

provided to reduce confounding effects resulting from the use of different masks. 

 The reference susceptibility map χ33 which was calculated using STI (37). The GRE phase images from each head 

orientation were affine-registered to the axial slab orientation (reference position), masked and the background 

fields removed as described for the single orientation case above. This local field information was then fed into an 

iterative LSQR solver (42) to estimate all components of the symmetric susceptibility tensor and provide the tensor 

element χ33 as reference susceptibility map. 

3D GRE with Wave-CAIPI acquisition (43) was used to acquire images of the head with 1.06 mm isotropic resolution in 12 

different orientations with respect to B0 (the head orientation table can be found in the downloadable dataset). Further 

sequence parameters were TE / TR = 25 / 35 ms, BW = 100 Hz/pixel and a 94-s acquisition time for each head orientation 

with 15-fold acceleration using a Siemens 32 channel head coil. Roemer/SENSE coil combination was employed (44,45), 

which used sensitivities estimated from reference acquisitions made with both, head and body coil reception. Wave-CAIPI is 

an accelerated acquisition/reconstruction technique that substantially reduces the scan time, which is especially useful for 

multi-orientation scans. Despite 15-fold acceleration, the average g-factor penalty due to parallel imaging reconstruction 

was only 9%. Thus, aliasing artifacts or noise amplification are not expected to impact the resulting susceptibilities (43).  

MPRAGE acquisition employed the same resolution and matrix size as 3D-GRE, and sampled 4 echoes using TE1 = 2.05 ms, 

echo spacing = 1.84 ms, TR = 2510 ms, inversion time (TI) = 1200 ms, BW=651 Hz/pixel and flip angle = 7°. The acquisition 

took 5 min 39 s using 2-fold GRAPPA acceleration (46). The magnitude images at all 4 echo times were combined by 

computing the root-sum-of-squares (47), and the combined magnitude image was provided to the participants.                                   

In addition to the imaging data, MATLAB (The MathWorks, Natick, MA) source code was provided for the numerical 

evaluation of the data set according to the error metrics described in detail below. This code allowed the contestants to 

focus on optimizing their algorithmic parameters without spending time writing scripts for the calculation of error metrics. 

The source code also included the widely utilized fast QSM reconstructions, thresholded k-space division (TKD) (28) and a 

closed-form L2-regularized algorithm (48) to provide contestants with a direct performance comparison to these 

algorithms. 

The images and the Matlab code for the QSM reconstruction challenge will remain available at http://qsm.neuroimaging.at. 

In addition to the data provided at the time of the challenge and described above, the archive currently also contains the 

GRE data magnitude and phase data acquired in all 12 orientations. The images provided are shown in Figure 1. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://qsm.neuroimaging.at/
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Figure 1: Image data provided to the contestants. The susceptibility maps are scaled from -0.1 to 0.25 ppm, the raw phase 

is scaled between  radians and the LBV-phase image is scaled from -0.05 to 0.05 radians. With the exception of 𝜒33, the 

reconstructed susceptibility tensor component images (marked here with asterisks) were not provided for the 

reconstruction challenge, but are now included in the downloadable data set at http://qsm.neuroimaging.at. 

 

Numerical measures of QSM reconstruction quality 

We employed quantitative error metrics to evaluate the difference between the reference susceptibility map and the 

submitted susceptibility maps. As well as the root mean squared error (RMSE), which is commonly used in the literature, we 

employed three additional error measures, which are often utilized in the fields of computer vision and image 

reconstruction: 

 The high-frequency error norm (HFEN) (49), which aims to measure the fidelity at high spatial frequencies. HFEN 

applies a Laplacian of a Gaussian (LoG) filter on the reference and input volumes and reports the L2 norm of their 

difference, normalized by the norm of the LoG-filtered reference. 

 The structural similarity index (SSIM) (50), which is a combined measure obtained from three complementary 

components (luminance similarity, contrast similarity, and structural similarity). SSIM aims to provide a metric that 

better reflects the “visual” similarity to the reference. 

 The absolute value of the mean error in selected anatomical structures (ROI error). To this end, we manually 

defined ROIs in white matter (genu and splenium of corpus callosum, frontal white matter, occipital white matter, 

capsula interna) and grey matter nuclei (globus pallidus, putamen, caudate nucleus, red nucleus, substantia nigra, 

and dentate nucleus) on the reference susceptibility map, χ33.  

These error metrics were calculated for each submitted map. For RMSE, HFEN and ROI error, smaller values denote better 

performance, whereas SSIM is normalized between 0 and 1, with 1 being the best possible result. The implementation of 

these error metrics was provided to the contestants as Matlab source code together with the downloadable image data set.  

Our current challenge format did not include a comparison of the reconstruction speed of the different algorithms as the 

QSM images were processed on the individual computers of the respective research groups, using different development 

environments (e.g. Matlab, Python, C++, CUDA).   

All susceptibility values are reported as ppm in the following. 

http://qsm.neuroimaging.at/
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RESULTS 

Brief description of the algorithms used by the contestants  

Overall, 27 susceptibility maps from 13 groups were evaluated. The algorithms either used the provided pre-processed 

(background removed) phase or the raw, wrapped phase. Several algorithms used the GRE magnitude for stabilization of 

the dipole inversion, and one approach (PHILIPS DTV) also utilized the MPRAGE images. 

The algorithms are briefly described in table 1 and images of a central transverse slice of all algorithms are shown in figure 

2. 

 

Figure 2: A single transverse slice from all QSM reconstructions submitted for the challenge. QSM images are scaled from -

0.1 to 0.25 ppm. See Table 1 for a brief description of all the QSM reconstruction algorithms shown here. 
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Numerical results: Winners 

Table 2 shows the results of the top ranked algorithms in each evaluation category. When all submissions were evaluated, 

RMSE ranged from 69.0 to 140.9 (median = 83.9), HFEN from 63.5 to 127.3 (median = 75.9), SSIM from 0.94 to 0.63 

(median = 0.82) and ROI ERROR from 0.016 to 0.039 ppm (median = 0.020).The winning QSM reconstructions are also 

depicted in detail in figure 3.  

 

Figure 3: Sagittal, coronal and axial slices of QSM reconstructions of the winners in each category: RMSE (UBC), HFEN and 

SSIM respectively (SFCR2), and ROI error (MATV). QSM images are scaled from -0.1 to 0.25 ppm.  

 

Winning Approach: RMSE  

The winner in the RMSE category was the approach developed by Alexander Rauscher’s team at the University of British 

Columbia, Canada. This algorithm used a weighted variant of a two-step dipole inversion algorithm (51). It adopts an 

incremental dipole inversion strategy (52–54), dividing the Fourier domain into well-conditioned and ill-conditioned regions. 

In the first step, the well-conditioned region is reconstructed by solving 𝜙 = 𝐅−𝟏𝐃𝐅 𝜒𝑤𝑒𝑙𝑙  using an LSMR solver (55), where 

𝜙 is the local field is spatial space, 𝐅 is the forward Fourier transform and 𝐅−𝟏 is the inverse Fourier transform. In order to 

avoid streaking artifacts the implicit regularization properties of Krylov subspace methods (56) are used by terminating the 

iterative process after only 5 iterations. 

To reconstruct the ill-conditioned region, a weighted total variation minimization problem was solved: 

𝜒∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜒‖𝜒‖WTV +
𝜇

2
‖𝐌𝜒 − 𝜒𝑤𝑒𝑙𝑙‖2

2     [4] 

where 𝐌 = 𝐅−𝟏(|𝐃| > 𝛿)𝐅 is a sampling matrix taking the value 1 in the well-conditioned region and 0 in the ill-

conditioned region according to a threshold 𝛿 applied to |𝐃|, 𝜇 is the regularization parameter, ‖𝜒‖WTV = ∑ 𝑊 |∇𝜒| is the 

weighted anisotropic total variation, and W = 1/(|∇𝜒𝑤𝑒𝑙𝑙| + 10−6) is a weighting matrix derived from the gradient (∇) of 

the well-conditioned susceptibility map (𝜒𝑤𝑒𝑙𝑙) reconstructed in step 1. The minimization was solved using the alternating 
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direction method of multipliers (ADMM) (57). The parameters used were 𝜇 = 6 ∙ 104 and 𝛿 = 0.197. The reconstruction 

time was 5.7 seconds. 

Winning Approach: HFEN and SSIM  

The JHU-XMU SFCR2 algorithm developed by Xu Li’s team at Johns Hopkins University, Maryland, USA, was the winner in 

both HFEN and SSIM categories and used a two-step structural feature based collaborative reconstruction (SFCR) algorithm 

(58). In the first step, an interim susceptibility map �̂� was reconstructed by using a compressed sensing (CS) model in the 

Fourier domain with two regularization constraints: 

�̂� = argmin𝜒 𝜆1‖𝑑𝑖𝑎𝑔(𝐌)𝜒𝑘(𝐤) − 𝑑𝑖𝑎𝑔(𝐌)𝐅𝜒‖2
2 + ‖𝑃𝑚𝑎𝑔∇𝜒‖

1
+ 𝜆2‖𝐑𝜒‖2

2  [5] 

where the structural prior 𝑃𝑚𝑎𝑔  was derived by thresholding the gradient amplitude of the magnitude image with 30% 

voxels considered as edges for L1 regularization (in 𝑃𝑚𝑎𝑔  edges were set to 0 and regions with no edges to 1). The fidelity 

mask 𝐑 for the L2 regularization was generated by combining masks obtained via thresholding a preliminary QSM map 

𝜒𝑘(𝐤) calculated with TKD and its gradient (similar to Fig. 4 in (58), with thresholds of 0.04 ppm for QSM and 0.1 for its 

gradient norm square). 𝐌 is a binary mask indicating the well-conditioned region in the Fourier domain, i.e. 𝐌 = |𝐃| >

𝛿 where 𝛿 is a threshold on the dipole kernel in the Fourier domain. Parameters chosen for this step were 𝛿 = 0.19,  𝜆1 =

50 and 𝜆2 = 2 and processing was terminated after three iterations. The final susceptibility map was then fitted in the 

spatial domain using weighted minimization: 

𝜒 = argmin𝜒 𝛾1‖𝑊(𝜙 − 𝐅−1𝐃𝐅𝜒)‖2
2 + ‖𝑃�̂�∇𝜒‖

1
+ 𝛾2‖𝐑𝜒‖2

2   [6] 

where the structural prior 𝑃�̂� was extracted from the interim susceptibility map �̂� (the solution of Eq. 5) with similar 30% 

edge voxels, 𝑊 = 1 |𝜙|1/3⁄  is a weighting matrix calculated from the local field 𝜙 and the same fidelity mask 𝐑 as in the 

first step was used. Regularization parameters chosen for this step were 𝛾1 = 50 and 𝛾2 = 1, and iterative processes were 

terminated after 2 iterations. 

Winning Approach: ROI accuracy 

The winner in this category was the morphology-adaptive total variation (MATV) algorithm developed by Yanqiu Feng’s 

team from Southern Medical University, Guangzhou, China. This algorithm first classifies the imaging target into smooth and 

non-smooth regions by thresholding the magnitude gradient map (59). In the dipole inversion, the regularization weights 

are adapted according to local morphological information: voxels in smooth regions are assigned larger TV regularization 

weights than in non-smooth regions. The QSM reconstruction via the MATV algorithm can be formulated as follows: 

𝜒 = argmin𝜒‖W(𝜙 − 𝐅−1𝐃𝐅𝜒)‖2
2 +   𝛼‖𝑃𝑚𝑎𝑔∇𝜒‖

1
+  𝛽‖(1 − 𝑃𝑚𝑎𝑔)∇𝜒‖

1
  [7] 

where W is a data weighting matrix to compensate the measured field noise (60) and 𝛼 and 𝛽 are the regularization 

parameters. The regularization parameters used were 𝛼 = 0.003, 𝛽 = 0.0009.  

Given only a marginal difference to the above described approach, we would like to acknowledge also the Primal-Dual and 

Forward Gradient Implementation (PD) algorithm developed by Yi Wang’s team from Cornell University, New York, USA 

(61). 

DISCUSSION 

The QSM 2016 reconstruction challenge established a framework for the numerical comparison of QSM algorithms. We 

limited the challenge to a single data set that matched conventional clinical acquisitions closely with respect to the 

resolution, readout bandwidth, echo time and coverage. In the following, we summarize the results, discuss the limitations 

of the design of the challenge, and highlight the lessons learned.  
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Summary of results 

The JHU-XMU SFCR2 algorithm won in two categories, SSIM and HFEN, and finished second in the RMSE ranking. The other 

winners, regarding RMSE and ROI accuracy, were the VANC UBC and SMU MATV algorithms. The top three algorithms in the 

RMSE ranking relied on reconstruction approaches known from compressed sensing (CS) MRI. As opposed to regularized 

inversion, where the entire Fourier domain is affected by regularization, in CS-approaches only the ill-conditioned Fourier 

sub-domain of the susceptibility map is estimated by minimizing a sparsity enforcing metric. This limitation to only a sub-

space of the Fourier domain was probably the key for allowing these top-ranking approaches to produce the best 

reconstruction accuracies. However, also these winning maps were not ideal from a visual or radiological point of view, 

suffering from over-smoothing, and conspicuity loss in fine structures (Figures 2 and 3). CS techniques employed in 

accelerated MR data acquisition exploit incoherent aliasing artifacts arising from pseudo-random under-sampling of the k-

space (62). The dipole artifacts in QSM reconstruction, however, appear more structured due to under-sampling only near 

the magic angle in the Fourier domain. Although the incoherent aliasing prerequisite for CS was fully not met, we think that 

these strategies performed well due to two main reasons:   

(i) Because the missing content in the ill-conditioned region is a relatively small portion (e.g. 20-30%) of the Fourier 

domain, its estimation is easier, and potential blurring artifacts mainly impact this conical region, whereas the majority 

of the Fourier spectrum of the susceptibility cannot be altered to minimize the employed sparsity or smoothness metric 

(54).  

ii) CS methods involving wavelet penalties do enjoy partial incoherence because the undersampling artifacts are 

distributed across the wavelet scales. The incoherence in both Total Variation and wavelet domains can be further 

improved by randomly under-sampling the ill-conditioned region (54). 

Despite these points, CS methods are not necessarily immune to over-smoothing if they allow a reduction of the data 

consistency with a large regularization parameter. In this case, the data consistency becomes less important than the prior 

information, i.e. well-conditioned frequency content is no longer kept intact in favor of matching the CS constraint.  

TKD and CFL2 solutions were provided as benchmark algorithms. The performance metrics RMSE / HFEN / SSIM for these 

algorithms were: 86.5 / 82.0 / 0.77 for TKD and 81.2 / 75.5 / 0.81 for CFL2. The winning algorithms had metrics: 69.0 / 63.5 / 

0.94, corresponding to an improvement of 18% in RMSE, 19% in HFEN and 16% in SSIM over CFL2. The improvement in ROI 

accuracy was smaller, CFL2 ranked seventh in this category. We conclude that if the average susceptibilities inside specific 

grey and white matter ROIs are desired, a method as simple as CFL2 may provide sufficient accuracy. The submitted 

algorithms, however, provided a marked improvement in artifact mitigation and retention of high frequency features 

relative to the CFL2 benchmark.  

In the last few years, several research groups have proposed single-step QSM algorithms, which estimate the underlying 

susceptibility directly from the raw phase without separate interim phase processing. Despite the fact that a very specific 

phase filtering pipeline (LBV + polynomial fitting) was applied to create the reference susceptibility maps, the single-step 

algorithms were capable of providing competitive results despite the processing pipeline bias for multi-step approaches in 

this challenge.  

Among the submissions, one approach employed parallel computing on GPU hardware for rapid dipole inversion (CHICAGO 

TGV). Despite solving the same underlying mathematical problem as other TGV based methods, this has yielded different 

performance metrics due to (i) using different regularization parameters and a different number of iterations, (ii) different 

implementations of the mathematical libraries and (iii) double precision (CPU) versus single precision (GPU) computation 

also has a substantial impact on iterative methods as any numerical differences accumulate.  

However, the main discussion points of this reconstruction challenge were the identification of performance metrics that 

would be representative of susceptibility image quality and the selection of reference susceptibility maps.  
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How representative are RMSE, HFEN, and SSIM of susceptibility map quality? 

All three measures are global error metrics aiming to summarize the mismatch against a reference image in a single 

number. We intentionally allowed the contestants to optimize for low RMSE by extensive parameter search. Although the 

algorithm applied for the post-challenge experiments shown in Figure 4 yielded highly over-regularized smooth QSM 

images, the resulting RMSE was only approximately 10% higher than that of the winning algorithm. RMSE is a simple global 

error metric and is usually not a reliable indicator of visual quality or over-smoothing by itself. Recognizing this, we added 

HFEN and SSIM to create a multi-dimensional performance vector that would allow us to probe differences between image 

features. However, the limited visual quality of the submitted susceptibility maps leads us to the conclusion that it will be 

important to find better metrics for the evaluation of susceptibility map quality.  

 

Figure 4: QSM algorithms were optimized to minimize error metrics in this challenge. This figure shows results of the GRAZ 

TGV algorithm with varying regularization parameter 𝛼0. While the QSM image with 𝛼0 = 0.004 (right) suffered from 

over-smoothing and conspicuity loss in fine features such as vessels and the cortex, the RMSE was better than for the 

normally utilized 𝛼0 = 0.0005 (left). QSM images are scaled from -0.1 to 0.25 ppm.  

The reason why we provided the reference susceptibility map was to ensure that each algorithm produced the best scoring 

susceptibility map for the given metrics. However, a major outcome of this challenge turned out to be that the chosen 

numerical metrics, which are intensively applied in computer vision research, were problematic because they favored over-

smoothing of the reconstructed susceptibility maps. Over-regularization was consistently observed as a strategy to improve 

all error metrics, leading to an unexpected visual appearance of the susceptibility maps that differs from the typical 

appearance of the maps known from the literature.  

Further insights on this issue could be gained by comparing the three fidelity metrics (RMSE, HFEN, and SSIM) and 

quantitative accuracy inside regions of interest (ROI error). The simple CFL2 method ranked 3
rd

 in ROI accuracy, while not 

making it into the top 10 in any of the fidelity metrics. Despite performing well when average values were considered inside 

ROIs, its image quality suffered from streaking and blurring artifacts, which were better captured by RMSE, HFEN, and SSIM 

metrics. However, it is more difficult to gain insights from a comparison between the three fidelity metrics. RMSE, HFEN, 

and SSIM aimed to capture overall error, high-frequency deviation, and “visual” fidelity, respectively.  

In future evaluations, some limitations of the metrics could be mitigated by incorporating experts’ visual rating of the 

submitted susceptibility maps. A potential way to amend the RMSE metric could be to compare the gradients of the 

susceptibility map against those in the reference map via ∇RMSE = 100 ∙ ‖∇(𝜒33 − 𝜒𝑟𝑒𝑐𝑜𝑛)‖2
2 / ‖∇𝜒33‖2

2. The metric 

∇RMSE may provide a more direct measure of the fidelity of high frequency components, and could complement the 

existing metrics and the visual rating.  
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However, while optimization in respect to certain quality measures will require further systematic investigations, the degree 

of regularization should be also chosen according to the subsequent usage of the QSM images depending whether this is 

anatomical ROI evaluation, voxel-based analysis or visual inspection by radiologists.  

Selection of the reference susceptibility map 

We selected 𝜒33 instead of the COSMOS solution as standard reference to eliminate the potential orientation bias in the 

latter susceptibility map. However, this required the assumption that phase contributions from the off-diagonal tensor 

terms 𝜒13 and 𝜒23 in the transverse plane are negligible. As demonstrated in Figure 1, these contributions are non-

negligible because the tensor elements can have about 70% amplitude relative to 𝜒33. 

One potential way to combine the strengths of both reference map candidates in future challenges would be to mask out 

the anisotropic regions in the COSMOS map. Such an anisotropy mask could be obtained by thresholding the STI anisotropy 

defined as 𝜒𝑚𝑠𝑎 = 𝜆1 − (𝜆2 + 𝜆3)/2 where 𝜆𝑖  are the susceptibility tensor eigenvalues. This mask could be refined using a 

white matter segmentation. 

Also related to limitations of the employed reference, there is clear evidence that the microstructural compartmentalization 

of magnetic susceptibility in white matter and its water distribution has a significant impact on the observed phase images 

(33–36). These effects are not accounted for by either COSMOS, STI or any of the single orientation reconstruction 

methods, yielding an error in susceptibility values in fiber bundles (33) that is difficult to estimate. As white matter 

represents a relatively large brain volume fraction, both white matter (WM) measurements and whole brain metrics will be 

affected by these microstructural effects, and a particular regularization might inadvertently improve the metrics without 

resulting in a more accurate or precise reconstruction. 

In summary, the existence of phase contrast related to off-diagonal tensor elements poses the question of what is the 

perfect susceptibility map reconstructed from a single-angle phase image? The presence of non-susceptibility contrast 

mechanisms including chemical exchange-induced frequency shifts (30), which are currently not accounted for by multi-

orientation QSM algorithms poses the question of how we can measure the gold standard in-vivo susceptibility map. Both 

seem to be open questions in our field. 

Lessons learned from the first QSM reconstruction challenge  

We are fully determined to push forward, improve and extend this research endeavor based on lessons learned from this 

initial challenge. In particular, the feedback from members of the QSM community who attended the Graz Workshop and 

the EMTP study group meeting at the ISMRM 2017 was encouraging to proceed with an evaluation of the various 

algorithmic approaches to better understand the potential and limitations of QSM. The main suggestions and 

recommendations addressed the limitations of the performance metrics for evaluation of the submitted susceptibility maps 

and the choice of the reference map. We list the conclusions from the various discussions in the following: 

I. Instead of relying entirely on error metrics, it would be informative for experienced radiologists and QSM experts 

to perform a visual assessment of submitted susceptibility maps. 

II. The challenge could be divided into two parts, where the first part would assess the quantitative accuracy with 

respect to a known ground truth. To this end, the challenge could comprise phase data obtained using the forward 

model (11) on a realistic numerical brain phantom derived from STI or COSMOS susceptibility maps. The data could 

be made more realistic by adding noise, partial volume artifacts and contributions from anisotropic susceptibility 

sources. The second part would involve in-vivo patient data and aim to assess the robustness of the methods in a 

clinical scenario, in the potential presence of motion, blooming and signal dropout artifacts. For parameter tuning, 

a COSMOS reference from a healthy control could be provided.   

III. Reference and submitted susceptibility maps could be compared on a per-voxel basis by assessing one-dimensional 

profiles or correlation coefficients. 
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IV. A better in-vivo reference map could be created by incorporating the contribution of 𝜒13 and 𝜒23 into the field 

map provided to the contestants (transverse orientation). A potential way of implementing this could be by 

rearranging the STI relation in the transverse plane as follows: 

𝚯(𝒌) = 𝐃 𝜒33 −
𝑘𝑧

𝑘2
(𝑘𝑥  𝜒13 + 𝑘𝑦 𝜒23) 

= 𝐃𝜒33 −
𝑘𝑧

2

𝑘2 (
𝑘𝑥

𝑘𝑧
 𝜒13 +

𝑘𝑦

𝑘𝑧
 𝜒23)    [8] 

now defining 𝜒 ≜
𝑘𝑥

𝑘𝑧
 𝜒13 +

𝑘𝑦

𝑘𝑧
 𝜒23,  

𝚯(𝒌) = 𝐃𝜒33 −
𝑘𝑧

2

𝑘2 𝜒 +
1

3
𝜒 −

1

3
𝜒      [9] 

𝚯(𝒌) +
1

3
𝜒 = 𝐃(𝜒33 + 𝜒)       [10] 

Equation 10 suggests that a new ground truth susceptibility could be created by 𝜒𝑛𝑒𝑤 ≜ 𝜒33 + 𝜒 and that the 

input local field data could be amended by 𝚯𝑛𝑒𝑤 ≜ 𝚯 +
1

3
𝜒. A numerical challenge in computing 𝜒 would be the 

division by 𝑘𝑧 for the plane of frequencies where 𝑘𝑧 = 0. To address this, we can interpret division by 𝑘𝑧 as 

integration along 𝑧 in image-space, and multiplication by 𝑘𝑥 (or 𝑘𝑦) as differentiation along 𝑥 (or 𝑦) axes (1). In a 

discrete implementation, integration would correspond to summation over 𝑧 indices and differentiation would be 

the difference between neighboring voxels along 𝑥 (or 𝑦) axes. 

V. Include the computational efficiency as additional information or a separate category, which would require access 

to a single evaluation computer for all contestants on which the processing time of all algorithms could be 

accurately determined and compared. 

VI. The data consistency could be used as an additional metric. To this end, one could use the submitted susceptibility 

maps in a forward field simulation (11) and compare the resulting phase against the measured phase. 

VII. Susceptibility maps should be compensated for the known systematic underestimation before quality metrics are 

calculated. This approach would avoid underestimation resulting in poor metrics despite the reconstruction being 

of otherwise high quality. 

VIII. The susceptibility could be evaluated exclusively in deep grey matter structures where QSM is more likely to be 

correct given the absence of highly anisotropic fiber bundles. 

IX. The mutual information, cross correlation and ∇RMSE between the reference and submitted maps could be 

included as additional quality metrics. 

X. Multi-echo phase data could be provided to allow field maps to be derived by fitting the phase over echo times 

(63–65). 

Most of these suggestions are feasible but may require additional data processing and acquisition. We have already 

updated the downloadable data set to include the magnitude and phase data from all 12 directions. This dataset could 

facilitate extensions such as an STI challenge, or future research towards computation of a better reference map. Since this 

dataset includes 𝜒33 and 𝜒𝐶𝑂𝑆𝑀𝑂𝑆 as well as all components of the susceptibility tensor, future publications on new 

algorithms may report performance metrics relative to any of these. 

Another interesting avenue to explore could be issuing sub-challenges with clinical data from populations with different 

diseases. Such a challenge would be an excellent opportunity to test the robustness of the algorithms in the clinical setting, 

and performance evaluation would benefit from the experience of neuro-radiologists. However, the lack of a true gold 

standard reference renders the quantitative assessment of susceptibility maps beyond the description of apparent artifacts 

difficult.  

 

 

 



13 

 

CONCLUSION 

The substantive differences between the various submitted susceptibility maps highlight a critical limitation of current 

regularized QSM techniques: the appearance of the resulting susceptibility maps depends strongly on the algorithm used 

and the associated parameter choices. Hence, a direct comparison of results from studies employing different QSM 

algorithms and parameters is challenging. Consequently, in the EMTP study group meeting at the ISMRM 2017 it was 

consensually decided that another challenge will be designed based on the lessons learned from the present challenge.    
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TABLES  

Table 1 

Name Description Input Phase 
RAW/LBV* 

TKD (provided) Threshold-based K-space Division (28) with zeroes at the ill-conditioned regions 
(cone) in k-space, threshold = 0.19. 

LBV 

CFL2 (provided) Closed-form L2-regularized inversion (48). LBV 

MARTINOS WTV Compressed Sensing compensated QSM (54), accelerated reconstruction using 
ADMM optimization. 

LBV 

GRAZ TGV Total generalized variation (TGV) based method incorporating phase unwrapping, 
background field removal and dipole inversion in a single iteration (66). 

RAW 

GRAZ TGV L1 Total generalized variation (TGV) based method (66) with additional L1 magnitude 
stabilization. 

RAW 

JENA HEIDI  Hybrid algorithm based on Homogeneity Enabled Incremental Dipole Inversion 
(HEIDI) that solves three sub-domains of k-space using different approaches, 
depending on the conditioning. The well-conditioned k-space was solved using 
unregularized LSQR, the critical part of the k-space was recovered by solving a 
weighted Total Variation Problem with priors derived from phase images, the 
transition area was derived from the LSQR solution using denoising (53). Parameters 
defining the three sub-domains were chosen to obtain optimal error measures 
relative to the gold standard. 

LBV 

JENA SDI TKD algorithm with extreme thresholding of the dipole kernel and underestimation 
compensation based on the deconvolution point-spread function as in superfast 
dipole inversion (SDI) (67). 

LBV 

UCL TKD 1 TKD as in (14,67) i.e. without zeroes inside the k-space cone. A threshold of 𝛿 =
2

3
 

was used with no correction for  underestimation. 

LBV 

UCL TIK  Closed-form Tikhonov inversion as alluded to in (68) and mentioned in (1) as a 
Tikhonov-regularized minimal norm solution. 1 had 𝛼 = 0.0588 and no correction 

for  underestimation. 2 had 𝛼 = 0.0588 and correction for  underestimation with 

a factor of 1.65. 4 had 𝛼 = 0.025 and correction for  underestimation with a factor 
of 1.30.  

LBV 

JHU-XMU 
SFCRKDN 

Based on the structural feature-based collaborative reconstruction (SFCR) QSM 
paper in (58), simplified the L2 regularization terms in M-step and S-step, added de-
noising operation, k-space based L1 solver and HEIDI like k-space combination. 

LBV 

JHU-XMU SFCR2 Based on the SFCR QSM paper in (58), L1 and L2 regularized two-step reconstruction 
with regularization a priori extracted from magnitude and interim susceptibility 
maps – see winning approach in categories HFEN and SSIM. 

LBV 

CHILE TGV L2 Magnitude weighted TGV. Uses an L2 data fidelity term, spatially weighted by the 
square of the magnitude. First order approximation of the non-linear term (69). 

LBV 
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CHILE TGV NL Non-linear (NL) TGV result. It uses a non-linear data fidelity term, similar to Liu's 
nonlinear MEDI but with a fast solver with alternating direction method of 
multipliers (ADMM) and a mixture of a global and local solvers to deal with the 
nonlinear equation. 

LBV 

CHILE NLD Discretization of the dipole kernel based on (70). It uses finite differences and the 
DFT to achieve an analytical solution in the Fourier domain. 

LBV 

CHILE NLG Dipole kernel defined in space by the Green’s function, integrating it for each voxel 
(71). 

LBV 

CHICAGO TGV Algorithm based on the TGV QSM method (66), implemented on GPU-hardware 
(CUDA 7.5, NVIDIA GeForce GTX 980TI).  

RAW 

BERKELEY STAR Streaking artifacts Reduction (STAR) via isolating and calculating strong susceptibility 
sources automatically, then large and small susceptibility values were reconstructed 
using a two-level TV approach (72). 

LBV 

VANC UBC LSMR solver (55) followed by weighted compressed sensing minimization – see 
winning approach in category RMSE. 

LBV 

IBR ITSWIM Variable regularization threshold for inverse process / k-space improvement with a 
binary mask including the deep grey matter nuclei and veins used in the iterative 
algorithm (73). 

LBV 

SMU MATV Morphology-Adaptive Total Variation (MATV) separates target susceptibility into 
smooth and non-smooth regions, where the latter are assigned smaller TV weights 
than smooth regions during dipole inversion (59) – see winning approach in the ROI 
accuracy category. 

LBV 

SMU MTKD TKD with morphological priors (MTKD). The target susceptibility map is separated 
into smooth and non-smooth regions by exploiting morphological information. The 
gradient of the target susceptibility map is forced to be zero in the smooth regions, 
and to be the gradient of TKD-reconstructed susceptibility map in the non-smooth 
regions (74). 

LBV 

NY MEDI Morphology Enabled Dipole Inversion (MEDI) method using a Bayesian 
regularization approach that adds spatial priors from the magnitude image (13,25). 

LBV 

NY PD Solving the objective of MEDI using the Primal-Dual (PD) formulation of the total 
variation and a forward difference method for discretization (61). 

LBV 

NY TFI The Total Field Inversion (TFI) method simultaneously estimates the background and 
local fields, preventing error propagation from background field removal to QSM 
(75). 

RAW 

PHILIPS DTV Single-step QSM starting from wrapped raw phase using Directional Total-Variation 
(DTV) with MPRAGE as a prior for estimating edges (76). 

RAW 

 

Table 1 Caption: Brief description of all QSM algorithms participating in the reconstruction challenge * RAW = raw phase 
(for single step algorithms), LBV = LBV preprocessed phase. The algorithms are named to reflect the team’s institution or 
location followed by an abbreviation related to the technique(s) exploited by each algorithm. 
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Table 2 

 

RMSE (%)  HFEN (%)  SSIM   ROI ERROR (ppm) 

69.0 VANC UBC 
 

63.5 
JHU-XMU 

SFCR2 
  

0.94 

JHU-XMU 

SFCR2 
  

0.016 

SMU MATV 

70.3 
JHU-XMU 

SFCR2  
68.8 GRAZ TGV L1 

 

JHU-XMU 

SFCRKDN  
NY PD 

73.6 
MARTINOS 

WTV 
 

68.9 VANC UBC 
 

 

0.93 

NY MEDI 
 

 

0.017 

 

CHILE TGV NL 

74.2 PHILIPS DTV 
 

70.9 PHILIPS DTV 
 

GRAZ TGV 
 

CHILE NLD 

74.6 GRAZ TGV L1 
 

71.8 SMU MATV 
 

0.87 GRAZ TGV L1 
 

SMU MTKD 

75.2 UCL TIK 1 
 

73.1 UCL TIK 1 
  

0.84 

CHILE TGV L2 
  

 

0.018 

 

 

CFL2 

76.6 UCL TKD 1 
 

73.6 
MARTINOS 

WTV 
 

NY TFI 
 

UCL TIK 2 

 

77.5 

GRAZ TGV 
 

74.1 IBR ITSWIM 
  

0.83 

 

JENA HEIDI 
 

UCL TIK 4 

BERKELEY STAR 
 

 

74.2 

JHU-XMU 

SFCRKDN 
 

CHILE NLD 
 

JHU-XMU SFCRKDN 

79.1 SMU MATV 
 

GRAZ TGV 
 

CHILE TGV NL 
 

CHILE TGV L2 

 

Table 2 caption: Top 10 algorithms with the best scores in each category evaluated for the QSM reconstruction challenge. 

 


