268 research outputs found
Cooperative breeding favours maternal investment in size over number of eggs in spiders
The transition to cooperative breeding may alter maternal investment strategies depending on density of breeders, extent of reproductive skew and allo-maternal care. Change in optimal investment from solitary to cooperative breeding can be investigated by comparing social species with non-social congeners. We tested two hypotheses in a mainly semelparous system: that social, cooperative breeders, compared to subsocial, solitarily breeding congeners, 1) lay fewer and larger eggs because larger offspring compete better for limited resources and become reproducers; 2) induce egg size variation within clutches as a bet-hedging strategy to ensure that some offspring become reproducers. Within two spider genera, Anelosimus and Stegodyphus, we compared species from similar habitats and augmented the results with a mini-meta-analysis of egg numbers depicted in phylogenies. We found that social species indeed laid fewer, larger eggs than subsocials, while egg size variation was low overall, giving no support for bet-hedging. We propose that the transition to cooperative breeding selects for producing few, large offspring because reproductive skew and high density of breeders and young create competition for resources and reproduction. Convergent evolution has shaped maternal strategies similarly in phylogenetically distant species and directed cooperatively breeding spiders to invest in quality rather than quantity of offspring
Thermodynamic properties and cloud droplet activation of a series of oxo-acids
We have investigated the thermodynamic properties of four aliphatic oxo-dicarboyxlic acids identified or thought to be present in atmospheric particulate matter: oxosuccinic acid, 2-oxoglutaric acid, 3-oxoglutaric acid, and 4-oxopimelic acid. The compounds were characterized in terms of their cloud condensation nuclei (CCN) activity, vapor pressure, density, and tendency to decarboxylate in aqueous solution. We deployed a variety of experimental techniques and instruments: a CCN counter, a Tandem Differential Mobililty Analyzer (TDMA) coupled with a laminar flow-tube, and liquid chromatography/mass spectrometry (LC/MS). The presence of the oxo functional group in the α-position causes the vapor pressure of the compounds to diminish by an order of magnitude with respect to the parent dicarboxylic acid, while the CCN activity is similar or increased. Dicarboxylic acids with an oxo-group in the β-position decarboxylate in aqueous solution. We studied the effects of this process on our measurements and findings
Temperature and volatile organic compound concentrations as controlling factors for chemical composition of alpha-pinene-derived secondary organic aerosol
This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentrations on the chemical composition of particles formed in the dark ozonolysis of alpha-pinene. All experiments were conducted in a 5m(3) Teflon chamber at an initial ozone concentration of 100 ppb and initial alpha-pinene concentrations of 10 and 50 ppb, respectively; at constant temperatures of 20, 0, or -15 degrees C; and at changing temperatures (ramps) from -15 to 20 and from 20 to -15 degrees C. The chemical composition of the particles was probed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A four-factor solution of a positive matrix factorization (PMF) analysis of the combined HR-ToF-AMS data is presented. The PMF analysis and the elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial alpha-pinene concentration (10 ppb) and at the highest temperature (20 degrees C). A higher initial alpha-pinene concentration (50 ppb) and/or lower temperature (0 or -15 degrees C) results in a lower oxidation level of the molecules contained in the particles. With respect to the carbon oxidation state, particles formed at 0 degrees C are more comparable to particles formed at 15 degrees C than to those formed at 20 degrees C. A remarkable observation is that changes in temperature during particle formation result in only minor changes in the elemental composition of the particles. Thus, the temperature at which aerosol particle formation is induced seems to be a critical parameter for the particle elemental composition. Comparison of the HR-ToF-AMS-derived estimates of the content of organic acids in the particles based on m/z 44 in the mass spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. Higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), while the organic acid functionalities account for an increasing fraction of the measured particle mass.Peer reviewe
Host plant availability and nest-site selection of the social spider Stegodyphus dumicola Pocock, 1898 (Eresidae)
An animals’ habitat defines the resources that are available for its use, such as host plants or
food sources, and the use of these resources are critical for optimizing fitness. Spiders are abundant
in all terrestrial habitats and are often associated with vegetation, which may provide structure for
anchoring capture webs, attract insect prey, or provide protective function. Social spiders construct
sedentary communal silk nests on host plants, but we know little about whether and how they make
nest-site decisions. We examined host plant use in relation to host plant availability in the social
spider Stegodyphus dumicola Pocock, 1898 (Eresidae) across different arid biomes in Namibia and
analysed the role of host plant characteristics (height, spines, scent, sturdiness) on nest occurrence.
Host plant communities and densities differed between locations. Spider nests were relatively more
abundant on Acacia spp., Boscia foetida, Combretum spp., Dichrostachys cinerea, Parkinsonia africana,
Tarchonanthus camphoratus, and Ziziphus mucronatus, and nests survived longer on preferred plant
genera Acacia, Boscia and Combretum. Spider nests were relatively more abundant on plants higher
than 2 m, and on plants with thorns and with a rigid structure. Our results suggest that spiders
display differential use of host plant species, and that characteristics such as rigidity and thorns
confer benefits such as protection from browsing animals.SUPPLEMENTARY MATERIALS : Table S1. Proportion of potential host plant species (Plant) and Stegodyphus
dumicola Pocock, 1898 nests (Nest) for each plant species, per study site. Empty cells indicate that the
species was not found in the study sites. Total sample size (Sample size line) is given both for the
number of plants (Plants (N=)) and the number of plants with a nest (Nests (N=)) for each study site.
OT = unknown host plant species in Otavi, WH = unknown host plant species in Windhoek.This research was funded by The Danish Council for Independent Research, grant number DFF—6108-00565, Novo Nordisk Foundation Interdisciplinary Synergy Grant number—NNF16OC0021110, and a postdoctoral grant from The Villum Foundation.http://www.mdpi.com/journal/insectsZoology and Entomolog
Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixed‐Phase Clouds
As Arctic sea ice cover diminishes, sea spray aerosols (SSA) have a larger potential to be emitted into the Arctic atmosphere. Emitted SSA can contain organic material, but how it affects the ability of particles to act as cloud condensation nuclei (CCN) is still not well understood. Here we measure the CCN‐derived hygroscopicity of three different types of aerosol particles: (1) Sea salt aerosols made from artificial seawater, (2) aerosol generated from artificial seawater spiked with diatom species cultured in the laboratory, and (3) aerosols made from samples of sea surface microlayer (SML) collected during field campaigns in the North Atlantic and Arctic Ocean. Samples are aerosolized using a sea spray simulation tank (plunging jet) or an atomizer. We show that SSA containing diatom and microlayer exhibit similar CCN activity to inorganic sea salt with a κ value of ∼1.0. Large‐eddy simulation (LES) is then used to evaluate the general role of aerosol hygroscopicity in governing mixed‐phase low‐level cloud properties in the high Arctic. For accumulation mode aerosol, the simulated mixed‐phase cloud properties do not depend strongly on κ, unless the values are lower than 0.4. For Aitken mode aerosol, the hygroscopicity is more important; the particles can sustain the cloud if the hygroscopicity is equal to or higher than 0.4, but not otherwise. The experimental and model results combined suggest that the internal mixing of biogenic organic components in SSA does not have a substantial impact on the cloud droplet activation process and the cloud lifetime in Arctic mixed‐phase clouds
Good Genes and Sexual Selection in Dung Beetles (Onthophagus taurus): Genetic Variance in Egg-to-Adult and Adult Viability
Whether species exhibit significant heritable variation in fitness is central for sexual selection. According to good genes models there must be genetic variation in males leading to variation in offspring fitness if females are to obtain genetic benefits from exercising mate preferences, or by mating multiply. However, sexual selection based on genetic benefits is controversial, and there is limited unambiguous support for the notion that choosy or polyandrous females can increase the chances of producing offspring with high viability. Here we examine the levels of additive genetic variance in two fitness components in the dung beetle Onthophagus taurus. We found significant sire effects on egg-to-adult viability and on son, but not daughter, survival to sexual maturity, as well as moderate coefficients of additive variance in these traits. Moreover, we do not find evidence for sexual antagonism influencing genetic variation for fitness. Our results are consistent with good genes sexual selection, and suggest that both pre- and postcopulatory mate choice, and male competition could provide indirect benefits to females
The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures
In recent years, sea spray as well as the biological material it contains has received increased attention as a source of ice-nucleating particles (INPs). Such INPs may play a role in remote marine regions, where other sources of INPs are scarce or absent. In the Arctic, these INPs can influence water–ice partitioning in low-level clouds and thereby the cloud lifetime, with consequences for the surface energy budget, sea ice formation and melt, and climate. Marine aerosol is of a diverse nature, so identifying sources of INPs is challenging. One fraction of marine bioaerosol (phytoplankton and their exudates) has been a particular focus of marine INP research. In our study we attempt to address three main questions. Firstly, we compare the ice-nucleating ability of two common phytoplankton species with Arctic seawater microlayer samples using the same instrumentation to see if these phytoplankton species produce ice-nucleating material with sufficient activity to account for the ice nucleation observed in Arctic microlayer samples. We present the first measurements of the ice-nucleating ability of two predominant phytoplankton species: Melosira arctica, a common Arctic diatom species, and Skeletonema marinoi, a ubiquitous diatom species across oceans worldwide. To determine the potential effect of nutrient conditions and characteristics of the algal culture, such as the amount of organic carbon associated with algal cells, on the ice nucleation activity, Skeletonema marinoi was grown under different nutrient regimes. From comparison of the ice nucleation data of the algal cultures to those obtained from a range of sea surface microlayer (SML) samples obtained during three different field expeditions to the Arctic (ACCACIA, NETCARE, and ASCOS), we found that they were not as ice active as the investigated microlayer samples, although these diatoms do produce ice-nucleating material. Secondly, to improve our understanding of local Arctic marine sources as atmospheric INPs we applied two aerosolization techniques to analyse the ice-nucleating ability of aerosolized microlayer and algal samples. The aerosols were generated either by direct nebulization of the undiluted bulk solutions or by the addition of the samples to a sea spray simulation chamber filled with artificial seawater. The latter method generates aerosol particles using a plunging jet to mimic the process of oceanic wave breaking. We observed that the aerosols produced using this approach can be ice active, indicating that the ice-nucleating material in seawater can indeed transfer to the aerosol phase. Thirdly, we attempted to measure ice nucleation activity across the entire temperature range relevant for mixed-phase clouds using a suite of ice nucleation measurement techniques – an expansion cloud chamber, a continuous-flow diffusion chamber, and a cold stage. In order to compare the measurements made using the different instruments, we have normalized the data in relation to the mass of salt present in the nascent sea spray aerosol. At temperatures above 248 K some of the SML samples were very effective at nucleating ice, but there was substantial variability between the different samples. In contrast, there was much less variability between samples below 248 K. We discuss our results in the context of aerosol–cloud interactions in the Arctic with a focus on furthering our understanding of which INP types may be important in the Arctic atmosphere
Moderate Multiple Parentage and Low Genetic Variation Reduces the Potential for Genetic Incompatibility Avoidance Despite High Risk of Inbreeding
Background: Polyandry is widespread throughout the animal kingdom. In the absence of direct benefits of mating with different males, the underlying basis for polyandry is enigmatic because it can carry considerable costs such as elevated exposure to sexual diseases, physical injury or other direct fitness costs. Such costs may be balanced by indirect genetic benefits to the offspring of polyandrous females. We investigated polyandry and patterns of parentage in the spider Stegodyphus lineatus. This species experiences relatively high levels of inbreeding as a result of its spatial population structure, philopatry and limited male mating dispersal. Polyandry may provide an opportunity for post mating inbreeding avoidance that reduces the risk of genetic incompatibilities arising from incestuous matings. However, multiple mating carries direct fitness costs to females suggesting that genetic benefits must be substantial to counter direct costs. Methodology/Principal Findings: Genetic parentage analyses in two populations from Israel and a Greek island, showed mixed-brood parentage in approximately 50 % of the broods. The number of fathers ranged from 1–2 indicating low levels of multiple parentage and there was no evidence for paternity bias in mixed-broods from both populations. Microsatellite loci variation suggested limited genetic variation within populations, especially in the Greek island population. Relatedness estimates among females in the maternal generation and potentially interacting individuals were substantial indicating fullsib and half-sib relationships
- …