7 research outputs found

    Functional studies on the mechanosensitive ion channel PIEZO1 in human induced pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Der Herzmuskel muss sich einer dynamischen und sich mechanisch verĂ€ndernden Umgebung anpassen. Die Mechanosignaltransduktion ermöglicht es Zellen mechanischen KrĂ€fte zu erfassen und durch nachgeschaltete biochemische Signalkaskaden darauf zu reagieren. Obwohl verschiedene Gewebestrukturen und Proteine damit in Verbindung gebracht wurden, wie das Herz die mechanischen KrĂ€fte wahrnimmt, ist unser VerstĂ€ndnis der kardialen Mechanosignaltransduktion unvollstĂ€ndig. Durch Dehnung aktivierte IonenkanĂ€le spielen eine wichtige Rolle bei der mechanosensitiven Autoregulation des Herzens. Um die funktionelle Rolle von PIEZO1 in Kardiomyozyten zu untersuchen, habe ich daher PIEZO1 in induzierten pluripotenten Stammzellen mittels Genomeditierung deletiert. Die PIEZO1-/- Zellen wurden dann in lebensfĂ€hige, herzĂ€hnlich schlagende Kardiomyozyten differenziert. In phĂ€notypische Analysen der elektrophysiologischer Eigenschaften, Zellmorphologie und der herzĂ€hnlichen SchlagaktivitĂ€t habe ich den Effekt der PIEZO1-deletion in genomeditierten Kardiomyozyten untersucht. Die Deletion von PIEZO1 zeigte zum ersten Mal, dass es PIEZO1-abhĂ€ngige dehnungsaktivierte und Kalzium-Ströme in vom Menschen stammenden differenzierten Kardiomyozyten gibt. Dies legt nahe, dass PIEZO1 eine Rolle in der Mechanosignaltransduction in Herzzellen spielt. DarĂŒber hinaus zeigte eine RNA-Sequenz Analyse, dass der Verlust von PIEZO1 in vom Menschen stammenden differenzierten Kardiomyozyten mit der Herunterregulation von Proteinen korreliert, die fĂŒr die extrazellulĂ€rer Matrix von Bedeutung sind. Diese Daten unterstreichen die Rolle von PIEZO1 in Kardiomyozyten und legen seine Bedeutung fĂŒr die Organisation und Struktur der extrazellulĂ€ren Matrix nahe.The cardiac muscle has to adapt in a highly dynamic mechanical environment. Mechanotransduction is the process that allows cells to sense the mechanical forces and respond by downstream biochemical signaling cascades. Although different tissue structures and proteins have been implicated in how the heart senses the mechanical forces, yet our understanding in cardiac mechanotransduction is incomplete. Stretch-activated channels (SACs) have been suggested to play an important role in the mechanosensitive autoregulation of the heart. PIEZO1 is a stretch-activated channel and has been involved in vascularization, erythrocyte volume homeostasis and regulation of the baroreceptor reflex, yet its role in cardiac mechanotransduction has not been described. To study the functional role of PIEZO1 in cardiomyocytes I have generated a PIEZO1 knockout (KO) human induced pluripotent cell (hiPSC) line using genome editing technology. The genome edited cells were then differentiated into viable, beating cardiomyocytes. Different phenotypic analyses were conducted, including the evaluation of electrophysiological characteristics, observation of cell morphology and beating activity of the genome edited hiPSC-derived cardiomyocytes. With this approach the aim was to gain more insight into PIEZO1 function in cardiomyocytes using a reliable, efficient and reproducible human cellular model system. For the first time PIEZO1-dependent calcium transients and stretch-activated currents were observed in hiPSC-derived cardiomyocytes (hiPSC-CMs). This proposes a possible role of PIEZO1 as a cardiac mechanotransducer. Furthermore, RNA-seq analysis revealed that loss of PIEZO1 in hiPSC-CMs is associated with downregulation of the expression of extracellular matrix-associated proteins. These data highlight the role of PIEZO1 in cardiomyocytes and suggest its implication in extracellular matrix organization and structure

    Serum androgens and prostate cancer among 643 cases and 643 controls in the European Prospective Investigation into Cancer and Nutrition

    No full text
    We examined the hypothesis that serum concentrations of circulating androgens and sex hormone binding globulin (SHBG) are associated with risk for prostate cancer in a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC). Concentrations of androstenedione, testosterone, androstanediol glucuronide and SHBG were measured in serum samples for 643 prostate cancer cases and 643 matched control participants, and concentrations of free testosterone were calculated. Conditional logistic regression models were used to calculate odds ratios for risk of prostate cancer in relation to the serum concentration of each hormone. After adjustment for potential confounders, there was no significant association with overall risk for prostate cancer for serum total or free testosterone concentrations (highest versus the lowest thirds: OR, 1.02; 95 % CI, 0.73-1.41 and OR, 1.07, 95 % CL 0.741.55, respectively) or for other androgens or SHBG. Subgroup analyses showed significant heterogeneity for androstenedione by cancer stage, with a significant inverse association of androstenedione concentration and risk for advanced prostate cancer. There were also weak positive associations between free testosterone concentration and risk for total prostate cancer among younger men and risk for high-grade disease. In summary, in this large nested case-control study, concentrations of circulating androgens or SHBG were not strongly associated with risk for total prostate cancer. However, our findings are compatible with a positive association of free testosterone with risk in younger men and possible heterogeneity in the association with androstenedione concentration by stage of disease; these findings warrant further investigation. (c) 2007 Wiley-Liss, Inc
    corecore