379 research outputs found

    Expression and activity of eIF6 trigger Malignant Pleural Mesothelioma growth in vivo

    Get PDF
    eIF6 is an antiassociation factor that regulates the availability of active 80S. Its activation is driven by the RACK1/PKCĪ² axis, in a mTORc1 independent manner. We previously described that eIF6 haploinsufficiency causes a striking survival in the EĪ¼-Myc mouse lymphoma model, with lifespans extended up to 18 months. Here we screen for eIF6 expression in human cancers. We show that Malignant Pleural Mesothelioma tumors (MPM) and a MPM cell line (REN cells) contain high levels of hyperphosphorylated eIF6. Enzastaurin is a PKC beta inhibitor used in clinical trials. We prove that Enzastaurin treatment decreases eIF6 phosphorylation rate, but not eIF6 protein stability. The growth of REN, in vivo, and metastasis are reduced by either Enzastaurin treatment or eIF6 shRNA. Molecular analysis reveals that eIF6 manipulation affects the metabolic status of malignant mesothelioma cells. Less glycolysis and less ATP content are evident in REN cells depleted for eIF6 or treated with Enzastaurin (Anti-Warburg effect). We propose that eIF6 is necessary for malignant mesothelioma growth, in vivo, and can be targeted by kinase inhibitors

    Translating the Game: Ribosomes as Active Players

    Get PDF
    Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators

    Isolation of a Novel Ī²4 Integrin-binding Protein (p27BBP) Highly Expressed in Epithelial Cells

    Get PDF
    The integrin beta4 has a long cytodomain necessary for hemidesmosome formation. A yeast two-hybrid screen using beta4 cytodomain uncovered a protein called p27(BBP) that represents a beta4 interactor. Both in yeast and in vitro, p27(BBP) binds the two NH2-terminal fibronectin type III modules of beta4, a region required for signaling and hemidesmosome formation. Sequence analysis of p27(BBP) revealed that p27(BBP) was not previously known and has no homology with any isolated mammalian protein, but 85% identical to a yeast gene product of unknown function. Expression studies by Northern analysis and in situ hybridization showed that, in vivo, p27(BBP) mRNA is highly expressed in epithelia and proliferating embryonic epithelial cells. An antibody raised against p27(BBP) COOH-terminal domain showed that all beta4-containing epithelial cell lines expressed p27(BBP). The p27(BBP) protein is insoluble and present in the intermediate filament pool. Furthermore, subcellular fractionation indicated the presence of p27(BBP) both in the cytoplasm and in the nucleus. Confocal analysis of cultured cells showed that part of p27(BBP) immunoreactivity was both nuclear and in the membrane closely apposed to beta4. These results suggest that the p27(BBP) is an in vivo interactor of beta4, possibly linking beta4 to the intermediate filament cytoskeleton

    In vivo evidence that truncated trkB.T1 participates in nociception

    Get PDF
    Brain-Derived Neurotrophic Factor (BDNF) is a central nervous system modulator of nociception. In animal models of chronic pain, BDNF exerts its effects on nociceptive processing by binding to the full-length receptor tropomyosin-related kinase B (trkB.FL) and transducing intracellular signaling to produce nocifensive behaviors. In addition to trkB.FL, the trkB locus also produces a widely-expressed alternatively-spliced truncated isoform, trkB.T1. TrkB.T1 binds BDNF with high affinity; however the unique 11 amino acid intracellular cytoplasmic tail lacks the kinase domain of trkB.FL. Recently, trkB.T1 was shown to be specifically up-regulated in a model of HIV-associated neuropathic pain, potentially implicating trkB.T1 as a modulator of nociception. Here, we report that trkB.T1 mRNA and protein is up-regulated in the spinal dorsal horn at times following antiretroviral drug treatment and hind paw inflammation in which nocifensive behaviors develop. While genetic depletion of trkB.T1 did not affect baseline mechanical and thermal thresholds, the absence of trkB.T1 resulted in significant attenuation of inflammation- and antiretroviral-induced nocifensive behaviors. Our results suggest that trkB.T1 up-regulation following antiretroviral treatment and tissue inflammation participates in the development and maintenance of nocifensive behavior and may represent a novel therapeutic target for pain treatment

    Role of microRNAs in translation regulation and cancer

    Get PDF
    MicroRNAs (miRNAs) are pervasively expressed and regulate most biological functions. They function by modulating transcriptional and translational programs and therefore they orchestrate both physiological and pathological processes, such as development, cell differentiation, proliferation, apoptosis and tumor growth. miRNAs work as small guide molecules in RNA silencing, by negatively regulating the expression of several genes both at mRNA and protein level, by degrading their mRNA target and/or by silencing translation. One of the most recent advances in the field is the comprehension of their role in oncogenesis. The number of miRNA genes is increasing and an alteration in the level of miRNAs is involved in the initiation, progression and metastases formation of several tumors. Some tumor types show a distinct miRNA signature that distinguishes them from normal tissues and from other cancer types. Genetic and biochemical evidence supports the essential role of miRNAs in tumor development. Although the abnormal expression of miRNAs in cancer cells is a widely accepted phenomenon, the cause of this dysregulation is still unknown. Here, we discuss the biogenesis of miRNAs, focusing on the mechanisms by which they regulate protein synthesis. In addition we debate on their role in cancer, highlighting their potential to become therapeutic targets

    Translating the Game: Ribosomes as Active Players

    Get PDF
    Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators

    Discovery and Preliminary Characterization of Translational Modulators that Impair the Binding of eIF6 to 60S Ribosomal Subunits

    Get PDF
    Eukaryotic initiation factor 6 (eIF6) is necessary for the nucleolar biogenesis of 60S ribosomes. However, most of eIF6 resides in the cytoplasm, where it acts as an initiation factor. eIF6 is necessary for maximal protein synthesis downstream of growth factor stimulation. eIF6 is an antiassociation factor that binds 60S subunits, in turn preventing premature 40S joining and thus the formation of inactive 80S subunits. It is widely thought that eIF6 antiassociation activity is critical for its function. Here, we exploited and improved our assay for eIF6 binding to ribosomes (iRIA) in order to screen for modulators of eIF6 binding to the 60S. Three compounds, eIFsixty-1 (clofazimine), eIFsixty-4, and eIFsixty-6 were identified and characterized. All three inhibit the binding of eIF6 to the 60S in the micromolar range. eIFsixty-4 robustly inhibits cell growth, whereas eIFsixty-1 and eIFsixty-6 might have dose- and cell-specific effects. Puromycin labeling shows that eIF6ixty-4 is a strong global translational inhibitor, whereas the other two are mild modulators. Polysome profiling and RT-qPCR show that all three inhibitors reduce the specific translation of well-known eIF6 targets. In contrast, none of them affect the nucleolar localization of eIF6. These data provide proof of principle that the generation of eIF6 translational modulators is feasible

    Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model.

    Get PDF
    Rett syndrome (RTT) is a neurodevelopmental disorder with no efficient treatment that is caused in the majority of cases by mutations in the gene methyl-CpG binding-protein 2 (MECP2). RTT becomes manifest after a period of apparently normal development and causes growth deceleration, severe psychomotor impairment and mental retardation. Effective animal models for RTT are available and show morphofunctional abnormalities of synaptic connectivity. However, the molecular consequences of MeCP2 disruption leading to neuronal and synaptic alterations are not known. Protein synthesis regulation via the mammalian target of the rapamycin (mTOR) pathway is crucial for synaptic organization, and its disruption is involved in a number of neurodevelopmental diseases. We investigated the phosphorylation of the ribosomal protein (rp) S6, whose activation is highly dependent from mTOR activity. Immunohistochemistry showed that rpS6 phosphorylation is severely affected in neurons across the cortical areas of Mecp2 mutants and that this alteration precedes the severe symptomatic phase of the disease. Moreover, we found a severe defect of the initiation of protein synthesis in the brain of presymptomatic Mecp2 mutant that was not restricted to a specific subset of transcripts. Finally, we provide evidence for a general dysfunction of the Akt/mTOR, but not extracellular-regulated kinase, signaling associated with the disease progression in mutant brains. Our results indicate that defects in the AKT/mTOR pathway are responsible for the altered translational control in Mecp2 mutant neurons and disclosed a novel putative biomarker of the pathological process. Importantly, this study provides a novel context of therapeutic interventions that can be designed to successfully restrain or ameliorate the development of RTT

    Direct and high throughput (HT) interactions on the ribosomal surface by iRIA

    Get PDF
    Ribosomes function as platforms for binding of other molecules, but technologies for studying this process are lacking. Therefore we developed iRIA (in vitro Ribosomes Interaction Assay). In approach I, Artemia salina ribosomes spotted on solid phase are used for binding picomoles of analytes; in approach II, cellular extracts allow the measurement of ribosome activity in different conditions. We apply the method to analyze several features of eIF6 binding to 60S subunits. By approach I, we show that the off-rate of eIF6 from preribosomes is slower than from mature ribosomes and that its binding to mature 60S occurs in the nM affinity range. By approach II we show that eIF6 binding sites on 60S are increased with mild eIF6 depletion and decreased in cells that are devoid of SBDS, a ribosomal factor necessary for 60S maturation and involved in Swachman Diamond syndrome. We show binding conditions to immobilized ribosomes adaptable to HT and quantify free ribosomes in cell extracts. In conclusion, we suggest that iRIA will greatly facilitate the study of interactions on the ribosomal surface
    • ā€¦
    corecore