9 research outputs found

    Growing a Sustainable Biofuels Industry: Economics, Environmental Considerations, and the Role of the Conservation Reserve Program

    Get PDF
    Biofuels are expected to be a major contributor to renewable energy in the coming decades under the Renewable Fuel Standard (RFS). These fuels have many attractive properties including the promotion of energy independence, rural development, and the reduction of national carbon emissions. However, several unresolved environmental and economic concerns remain. Environmentally, much of the biomass is expected to come from agricultural expansion and/or intensification, which may greatly affect the net environmental impact, and economically, the lack of a developed infrastructure and bottlenecks along the supply chain may affect the industry\u27s economic vitality. The approximately 30 million acres (12 million hectares) under the Conservation Reserve Program (CRP) represent one land base for possible expansion. Here, we examine the potential role of the CRP in biofuels industry development, by (1) assessing the range of environmental effects on six end points of concern, and (2) simulating differences in potential industry growth nationally using a systems dynamics model. The model examines seven land-use scenarios (various percentages of CRP cultivation for biofuel) and five economic scenarios (subsidy schemes) to explore the benefits of using the CRP. The environmental assessment revealed wide variation in potential impacts. Lignocellulosic feedstocks had the greatest potential to improve the environmental condition relative to row crops, but the most plausible impacts were considered to be neutral or slightly negative. Model simulations revealed that industry growth was much more sensitive to economic scenarios than land-use scenarios—similar volumes of biofuels could be produced with no CRP as with 100% utilization. The range of responses to economic policy was substantial, including long-term market stagnation at current levels of first-generation biofuels under minimal policy intervention, or RFS-scale quantities of biofuels if policy or market conditions were more favorable. In total, the combination of the environmental assessment and the supply chain model suggests that large-scale conversion of the CRP to row crops would likely incur a significant environmental cost, without a concomitant benefit in terms of biofuel production

    Predicting ecological connectivity in urbanizing landscapes

    No full text
    Nearly half the world’s population lives in urban centers, and these areas are increasingly important components of regional and global land cover. However, their ecological attributes are often overlooked, despite the presence of species, ecosystem services, and risks associated with the spread of pests or threatening processes such as fire. Movement and dispersal of organisms contribute to species persistence in urban landscapes; however, landscape patterns that promote ecological connectivity may also facilitate the spread of undesirable organisms or processes. I investigate how urban form can be used to predict ecological connectivity and assist in prioritizing urban landscapes for conservation activities and risk management. I examine the value of qualitative and quantitative descriptions of urban morphology as predictors of ecological connectivity by comparing sixty-six cities in the USA. Results show that qualitative categories are not adequate for describing ecological connectivity; multivariate descriptions are much better predictors, with urban area, number of urban patches, urban patch extent, level of aggregation, and perimeter area fractal dimension composing the significant synthetic variables. The dominance of area as a differentiating variable led to the development of a new urban connectivity index using a combination of urban area and state population size. This metric, based on readily available aspatial data, explains 78% of variation in ecological connectivity. These results provide a simple but novel tool for beginning to understand the role of urban morphology in promoting desirable environmental outcomes and managing environmental risks in urbanizing landscapes.

    Effects of Climate Change on Aquatic Invasive Species and Implications for Management and Research

    Get PDF
    Global change stressors, including climate change and variability and changes in land use, are major drivers of ecosystem alterations. Invasive species, which are non-native species that cause environmental or economic damages or human-health impacts, also contribute to ecosystem changes. The interactions between stressors and invasive species, although not well understood, may exacerbate the impacts of climate change on ecosystems, and likewise, climate change may enable further invasions. This report reviews available literature on climate-change effects on aquatic invasive species (AIS) and examines state-level AIS management activities. Data on management activities came from publicly available information, was analyzed with respect to climate-change effects, and was reviewed by managers. This report also analyzes state and regional AIS management plans to determine their capacity to incorporate information on changing conditions generally, and climate change specifically. Although there is no mandate that directs states to consider climate change in AIS management plans, state managers can consider predicted effects of climate change on prevention, control, and eradication in order to manage natural resources effectively under changing climatic conditions. Further scientific research and data collection are needed in order to equip managers with the tools and information necessary to conduct effective AIS management in the face of climate change

    Hydrophobic Hollow Fiber Membranes for Treating MTBE-Contaminated Water

    No full text

    Biofuels: Network Analysis of the Literature Reveals Key Environmental and Economic Unknowns

    No full text
    Despite rapid growth in biofuel production worldwide, it is uncertain whether decision-makers possess sufficient information to fully evaluate the impacts of the industry and avoid unintended consequences. Doing so requires rigorous peer-reviewed data and analyses across the entire range of direct and indirect effects. To assess the coverage of scientific research, we analyzed over 1600 peer-reviewed articles published between 2000 and 2009 that addressed 23 biofuels-related topics within four thematic areas: environment and human well-being, economics, technology, and geography. Greenhouse gases, fuel production, and feedstock production were well-represented in the literature, while trade, biodiversity, and human health were not. Gaps were especially striking across topics in the Southern Hemisphere, where the greatest potential socio-economic benefits, as well as environmental damages, may co-occur. There was strong asymmetry in the connectedness of research topics; greenhouse gases articles were twice as often connected to other topics as biodiversity articles. This could undermine the ability of scientific and economic analyses to adequately evaluate impacts and avoid significant unintended consequences. At the least, our review suggests caution in this developing industry and the need to pursue more interdisciplinary research to assess complex trade-offs and feedbacks inherent to an industry with wide-reaching potential impacts

    QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

    Get PDF
    A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics
    corecore