35 research outputs found

    Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei

    Get PDF
    The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Depletion of Trypanosome CTR9 Leads to Gene Expression Defects

    Get PDF
    The Paf complex of Opisthokonts and plants contains at least five subunits: Paf1, Cdc73, Rtf1, Ctr9, and Leo1. Mutations in, or loss of Paf complex subunits have been shown to cause defects in histone modification, mRNA polyadenylation, and transcription by RNA polymerase I and RNA polymerase II. We here investigated trypanosome CTR9, which is essential for trypanosome survival. The results of tandem affinity purification suggested that trypanosome CTR9 associates with homologues of Leo1 and Cdc73; genes encoding homologues of Rtf1 and Paf1 were not found. RNAi targeting CTR9 resulted in at least ten-fold decreases in 131 essential mRNAs: they included several that are required for gene expression and its control, such as those encoding subunits of RNA polymerases, exoribonucleases that target mRNA, RNA helicases and RNA-binding proteins. Simultaneously, some genes from regions subject to chromatin silencing were derepressed, possibly as a secondary effect of the loss of two proteins that are required for silencing, ISWI and NLP1

    Targeting pathogen metabolism without collateral damage to the host

    Get PDF
    The development of drugs that can inactivate disease-causing cells (e.g. cancer cells or parasites) without causing collateral damage to healthy or to host cells is complicated by the fact that many proteins are very similar between organisms. Nevertheless, due to subtle, quantitative differences between the biochemical reaction networks of target cell and host, a drug can limit the flux of the same essential process in one organism more than in another. We identified precise criteria for this â €network-based' drug selectivity, which can serve as an alternative or additive to structural differences. We combined computational and experimental approaches to compare energy metabolism in the causative agent of sleeping sickness, Trypanosoma brucei, with that of human erythrocytes, and identified glucose transport and glyceraldehyde-3-phosphate dehydrogenase as the most selective antiparasitic targets. Computational predictions were validated experimentally in a novel parasite-erythrocytes co-culture system. Glucose-transport inhibitors killed trypanosomes without killing erythrocytes, neurons or liver cells

    Comparative genomics of drug resistance in <i>Trypanosoma brucei rhodesiense</i>

    Get PDF
    Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine

    ATG24 represses autophagy and differentiation and is essential for homeostasy of the flagellar pocket in trypanosoma brucei

    Get PDF
    We have previously identified homologs for nearly half of the approximately 30 known yeast Atg's in the genome database of the human sleeping sickness parasite Trypanosoma brucei. So far, only a few of these homologs have their role in autophagy experimentally confirmed. Among the candidates was the ortholog of Atg24 that is involved in pexophagy in yeast. In T. brucei, the peroxisome-like organelles named glycosomes harbor core metabolic processes, especially glycolysis. In the autotrophic yeast, autophagy is essential for adaptation to different nutritional environments by participating in the renewal of the peroxisome population. We hypothesized that autophagic turnover of the parasite's glycosomes plays a role in differentiation during its life cycle, which demands adaptation to different host environments and associated dramatic changes in nutritional conditions. We therefore characterized T. brucei ATG24, the T. brucei ortholog of yeast Atg24 and mammalian SNX4, and found it to have a regulatory role in autophagy and differentiation as well as endocytic trafficking. ATG24 partially localized on endocytic membranes where it was recruited via PI3-kinase III/VPS34. ATG24 silencing severely impaired receptor-mediated endocytosis of transferrin, but not adsorptive uptake of a lectin, and caused a major enlargement of the flagellar pocket. ATG24 silencing approximately doubled the number of autophagosomes, suggesting a role in repressing autophagy, and strongly accelerated differentiation, in accordance with a role of autophagy in parasite differentiation. Overexpression of the two isoforms of T. brucei ATG8 fused to GFP slowed down differentiation, possibly by a dominant-negative effect. This was overcome by ATG24 depletion, further supporting its regulatory role

    Targeting Cattle-Borne Zoonoses and Cattle Pathogens Using a Novel Trypanosomatid-Based Delivery System

    Get PDF
    Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum) theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis

    Micronutrient fortification of food and its impact on woman and child health: A systematic review

    Get PDF
    Background: Vitamins and minerals are essential for growth and metabolism. The World Health Organization estimates that more than 2 billion people are deficient in key vitamins and minerals. Groups most vulnerable to these micronutrient deficiencies are pregnant and lactating women and young children, given their increased demands. Food fortification is one of the strategies that has been used safely and effectively to prevent vitamin and mineral deficiencies.Methods: A comprehensive search was done to identify all available evidence for the impact of fortification interventions. Studies were included if food was fortified with a single, dual or multiple micronutrients and impact of fortification was analyzed on the health outcomes and relevant biochemical indicators of women and children. We performed a meta-analysis of outcomes using Review Manager Software version 5.1.Results: Our systematic review identified 201 studies that we reviewed for outcomes of relevance. Fortification for children showed significant impacts on increasing serum micronutrient concentrations. Hematologic markers also improved, including hemoglobin concentrations, which showed a significant rise when food was fortified with vitamin A, iron and multiple micronutrients. Fortification with zinc had no significant adverse impact on hemoglobin levels. Multiple micronutrient fortification showed non-significant impacts on height for age, weight for age and weight for height Z-scores, although they showed positive trends. The results for fortification in women showed that calcium and vitamin D fortification had significant impacts in the post-menopausal age group. Iron fortification led to a significant increase in serum ferritin and hemoglobin levels in women of reproductive age and pregnant women. Folate fortification significantly reduced the incidence of congenital abnormalities like neural tube defects without increasing the incidence of twinning. The number of studies pooled for zinc and multiple micronutrients for women were few, though the evidence suggested benefit. There was a dearth of evidence for the impact of fortification strategies on morbidity and mortality outcomes in women and children.Conclusion: Fortification is potentially an effective strategy but evidence from the developing world is scarce. Programs need to assess the direct impact of fortification on morbidity and mortality
    corecore