135 research outputs found

    Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals

    Get PDF
    Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v. Fe-sufficient children. Using stable isotopes in test meals in young women (n 49) selected for low and high Fe status, we compared the absorption of FPP with FS. We analysed data from previous efficacy trials in children (n 258) to determine whether Fe status at baseline predicted response to FS v. FPP as salt fortificants. Plasma ferritin was a strong negative predictor of Fe bioavailability from FS (P <0·0001) but not from FPP. In the efficacy trials, body Fe at baseline was a negative predictor of the change in body Fe for both FPP and FS, but the effect was significantly greater with FS (P <0·01). Because Fe deficiency up-regulates Fe absorption from FS but not from FPP, food fortification with FS may have relatively greater impact in Fe-deficient children. Thus, more soluble Fe compounds not only demonstrate better overall absorption and can be used at lower fortification levels, but they also have the added advantage that, because their absorption is up-regulated in Fe deficiency, they innately ‘target’ Fe-deficient individuals in a populatio

    Acetogenic Fermentation From Oxygen Containing Waste Gas

    Get PDF
    The microbial production of bulk chemicals from waste gas is becoming a pertinent alternative to industrial strategies that rely on fossil fuels as substrate. Acetogens can use waste gas substrates or syngas (CO, CO2_{2}, H2_{2}) to produce chemicals, such as acetate or ethanol, but as the feed gas often contains oxygen, which inhibits acetogen growth and product formation, a cost-prohibitive chemical oxygen removal step is necessary. Here, we have developed a two-phase microbial system to facilitate acetate production using a gas mixture containing CO and O2_{2}. In the first phase the facultative anaerobic carboxydotroph Parageobacillus thermoglucosidasius was used to consume residual O2_{2} and produce H2_{2} and CO2_{2}, which was subsequently utilized by the acetogen Clostridium ljungdahlii for the production of acetate. From a starting amount of 3.3 mmol of CO, 0.52 mmol acetate was produced in the second phase by C. ljungdahlii. In this set-up, the yield achieved was 0.16mol acetate/mol CO, a 63% of the theoretical maximum. This system has the potential to be developed for the production of a broad range of bulk chemicals from oxygen-containing waste gas by using P. thermoglucosidasius as an oxygen scrubbing tool

    Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals

    Get PDF
    Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v. Fe-sufficient children. Using stable isotopes in test meals in young women (n 49) selected for low and high Fe status, we compared the absorption of FPP with FS. We analysed data from previous efficacy trials in children (n 258) to determine whether Fe status at baseline predicted response to FS v. FPP as salt fortificants. Plasma ferritin was a strong negative predictor of Fe bioavailability from FS (P<0·0001) but not from FPP. In the efficacy trials, body Fe at baseline was a negative predictor of the change in body Fe for both FPP and FS, but the effect was significantly greater with FS (P<0·01). Because Fe deficiency up-regulates Fe absorption from FS but not from FPP, food fortification with FS may have relatively greater impact in Fe-deficient children. Thus, more soluble Fe compounds not only demonstrate better overall absorption and can be used at lower fortification levels, but they also have the added advantage that, because their absorption is up-regulated in Fe deficiency, they innately ‘target' Fe-deficient individuals in a populatio

    Effects of different operating parameters on hydrogen production by Parageobacillus thermoglucosidasius DSM 6285

    Get PDF
    Hydrogen gas represents a promising alternative energy source to dwindling fossil fuel reserves, as it carries the highest energy per unit mass and its combustion results in the release of water vapour as only byproduct. The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen via the water–gas shift reaction catalyzed by a carbon monoxide dehydrogenase–hydrogenase enzyme complex. Here we have evaluated the effects of several operating parameters on hydrogen production, including different growth temperatures, pre-culture ages and inoculum sizes, as well as different pHs and concentrations of nickel and iron in the fermentation medium. All of the tested parameters were observed to have a substantive effect on both hydrogen yield and (specific) production rates. A final experiment incorporating the best scenario for each tested parameter showed a marked increase in the H2 production rate compared to each individual parameter. The optimised parameters serve as a strong basis for improved hydrogen production with a view of commercialisation of this process

    Identification and stage-specific association with the translational apparatus of TbZFP3, a CCCH protein that promotes trypanosome life-cycle development

    Get PDF
    The post-transcriptional control of gene expression is becoming increasingly important in the understanding of regulated events in eukaryotic cells. The parasitic kinetoplastids have a unique reliance on such processes, because their genome is organized into polycistronic transcription units in which adjacent genes are not coordinately regulated. Indeed, the number of RNA-binding proteins predicted to be encoded in the genome of kinetoplastids is unusually large, invoking the presence of unique RNA regulators dedicated to gene expression in these evolutionarily ancient organisms. Here, we report that a small CCCH zinc finger protein, TbZFP3, enhances development between life-cycle stages in Trypanosoma brucei. Moreover, we demonstrate that this protein interacts both with the translational machinery and with other small CCCH proteins previously implicated in trypanosome developmental control. Antibodies to this protein also co-immunoprecipitate EP procyclin mRNA and encode the major surface antigen of insect forms of T. brucei. Strikingly, although TbZFP3 is constitutively expressed, it exhibits developmentally regulated association with polyribosomes, and mutational analysis demonstrates that this association is essential for the expression of phenotype. TbZFP3 is therefore a novel regulator of developmental events in kinetoplastids that acts at the level of the post-transcriptional control of gene expression

    Functional expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity for diminazene uptake

    Get PDF
    It has long been established that the Trypanosoma brucei TbAT1/P2 aminopurine transporter is involved in the uptake of diamidine and arsenical drugs including pentamidine, diminazene aceturate and melarsoprol. Accordingly, it was proposed that the closest Trypanosoma congolense paralogue, TcoAT1, might perform the same function in this parasite, and an apparent correlation between a Single Nucleotide Polymorphism (SNP) in that gene and diminazene tolerance was reported for the strains examined. Here, we report the functional cloning and expression of TcoAT1 and show that in fact it is the syntenic homologue of another T. brucei gene of the same Equilibrative Nucleoside Transporter (ENT) family: TbNT10. The T. congolense genome does not seem to contain a syntenic equivalent to TbAT1. Two TcoAT1 alleles, differentiated by three independent SNPs, were expressed in the T. brucei clone B48, a TbAT1-null strain that further lacks the High Affinity Pentamidine Transporter (HAPT1); TbAT1 was also expressed as a control. The TbAT1 and TcoAT1 transporters were functional and increased sensitivity to cytotoxic nucleoside analogues. However, only TbAT1 increased sensitivity to diamidines and to cymelarsan. Uptake of [3H]-diminazene was detectable only in the B48 cells expressing TbAT1 but not TcoAT1, whereas uptake of [3H]-inosine was increased by both TcoAT1 alleles but not by TbAT1. Uptake of [3H]-adenosine was increased by all three ENT genes. We conclude that TcoAT1 is a P1-type purine nucleoside transporter and the syntenic equivalent to the previously characterised TbNT10; it does not mediate diminazene uptake and is therefore unlikely to play a role in diminazene resistance in T. congolense

    Efficacy of wheat-based biscuits fortified with microcapsules containing ferrous sulfate and potassium iodate or a new hydrogen-reduced elemental iron: a randomised, double-blind, controlled trial in Kuwaiti women

    Get PDF
    Adverse sensory changes prevent the addition of highly bioavailable ferrous sulfate (FeSO4) to most wheat flours. Poorly absorbable reduced Fe powders are commonly used. Encapsulation of FeSO4 can overcome these sensory changes, but the particle size of commercial compounds is too large to be used by flour mills. The first objective of the study was to measure the efficacy in wheat flour of two newly developed Fe compounds, an H-reduced Fe powder (NutraFine™ RS; North America Höganäs High Alloys LLC, Johnstown, PA, USA) and small particle-sized (40μm) encapsulated FeSO4. As a second objective, the microcapsules were evaluated as a vehicle for iodine fortification. A randomised, double-blind controlled intervention trial was conducted in Kuwaiti women (n 279; aged 18-35 years) with low body Fe stores (serum ferritin (SF) <25μg/l) randomly assigned to one of three groups (20mg Fe as NutraFine™ RS, 10mg Fe as encapsulated FeSO4 and 150μg iodine, or no fortification Fe) who consumed wheat-based biscuits 5d per week. At baseline and 22 weeks, Hb, SF, transferrin receptor, urinary iodine and body Fe stores were measured. Relative to control, mean SF in the encapsulated FeSO4 group increased by 88% (P<0·001) and body Fe stores increased from −0·96 to 2·24mg/kg body weight (P<0·001), while NutraFine™ RS did not significantly increase SF or body Fe stores. The median urinary iodine concentration increased from 140 to 213μg/l (P<0·01). NutraFine™ RS added at double the amount of Fe as FeSO4 was not efficacious in improving Fe status. The newly developed microcapsules were highly efficacious in improving both Fe stores and iodine statu

    Effect of concurrent vitamin A and iodine deficiencies on the thyroid-pituitary axis in rats

    Full text link
    OBJECTIVE: Deficiencies of vitamin A and iodine are common in many developing countries. Vitamin A deficiency (VAD) may adversely affect thyroid metabolism. The study aim was to investigate the effects of concurrent vitamin A and iodine deficiencies on the thyroid-pituitary axis in rats. DESIGN: Weanling rats (n = 56) were fed diets deficient in vitamin A (VAD group), iodine (ID group), vitamin A and iodine (VAD + ID group), or sufficient in both vitamin A and iodine (control) for 30 days in a pair-fed design. Serum retinol (SR), thyroid hormones (FT(4), TT(4), FT(3), and TT(3)), serum thyrotropin (TSH), pituitary TSHbeta mRNA expression levels, and thyroid weights were determined at the end of the depletion period. MAIN OUTCOME: Compared to the control and ID groups, SR concentrations were about 35% lower in the VAD and VAD + ID groups (p < 0.001), indicating moderate VA deficiency. Comparing the VAD and control groups, there were no significant differences in TSH, TSHbeta mRNA, thyroid weight, or thyroid hormone levels. Compared to the control group, serum TSH, TSHbeta mRNA, and thyroid weight were higher (p < 0.05), and FT4 and TT4 were lower (p < 0.001), in the VAD + ID and ID groups. Compared to the ID group, TSH, TSHbeta mRNA, and thyroid weight were higher (p < 0.01) and FT(4) and TT(4) were lower (p < 0.001) in the VAD + ID group. There were no significant differences in TT3 or FT3 concentrations among groups. CONCLUSION: Moderate VAD alone has no measurable effect on the pituitary-thyroid axis. Concurrent ID and VAD produce more severe primary hypothyroidism than ID alone

    Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei

    Get PDF
    The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively
    corecore