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The microbial production of bulk chemicals from waste gas is becoming a pertinent

alternative to industrial strategies that rely on fossil fuels as substrate. Acetogens can use

waste gas substrates or syngas (CO, CO2, H2) to produce chemicals, such as acetate

or ethanol, but as the feed gas often contains oxygen, which inhibits acetogen growth

and product formation, a cost-prohibitive chemical oxygen removal step is necessary.

Here, we have developed a two-phase microbial system to facilitate acetate production

using a gas mixture containing CO and O2. In the first phase the facultative anaerobic

carboxydotroph Parageobacillus thermoglucosidasiuswas used to consume residual O2

and produce H2 and CO2, which was subsequently utilized by the acetogen Clostridium

ljungdahlii for the production of acetate. From a starting amount of 3.3 mmol of CO,

0.52 mmol acetate was produced in the second phase by C. ljungdahlii. In this set-up,

the yield achieved was 0.16mol acetate/mol CO, a 63% of the theoretical maximum.

This system has the potential to be developed for the production of a broad range of

bulk chemicals from oxygen-containing waste gas by using P. thermoglucosidasius as

an oxygen scrubbing tool.

Keywords: Parageobacillus thermoglucosidasius, Clostridium ljungdahlii, water-gas shift reaction, anaerobic

acetate production, Wood-Ljungdahl pathway, syngas

INTRODUCTION

The production of value-added chemicals, such as organic acids (e.g., acetate and succinate),
glycerol derivatives (e.g., 2,3-butanediol and 1,3-propanediol) and alcohols (e.g., butanol,
methanol, and ethanol) is still largely reliant on the use of fossil fuels as substrate (Hatti-Kaul
et al., 2007; Zhang et al., 2017). Dwindling reserves and negative environmental effects associated
with fossil fuel emissions underpin the necessity to develop novel inexpensive and environmentally
friendly means of producing such chemicals. One potential alternative involves the use of synthesis
gas (syngas) which consists primarily of hydrogen (H2), carbon dioxide (CO2), and carbon
monoxide (CO) (Teixeira et al., 2018). Syngas can be produced from natural gas or coal as well
as inexpensive feedstocks, such as lignocellulose (Barnard et al., 2010). Some microorganisms are
capable of metabolizing the components from syngas into a wide range of chemical compounds,
such as acetate, butanol, lactate, and ethanol (Liou et al., 2005; Drake et al., 2006; Köpke and Dürre,
2011; Daniell et al., 2012). Acetogens are microorganisms that are capable of producing acetyl-
CoA out of two molecules of CO2 or CO via the Wood-Ljungdahl (W-L) pathway (Diekert and
Wohlfarth, 1994). For example,Clostridium ljungdahlii can ferment CO2/H2 or CO/H2 via theW-L
or Acetyl-CoA-pathway into acetyl-CoA. Further conversions lead to acetate as a main product
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and ethanol, butyrate, butanol and 2,3-butanediol in smaller
amounts (Tanner et al., 1993; Köpke and Dürre, 2011). However,
C. ljungdahlii and most other syngas fermenters are strict
anaerobes, which limits the use of industrial waste gasses
containing O2 (Liew et al., 2016). This can be linked to the oxygen
sensitivity of many enzymes central to syngas fermentation
pathways. For example, the key W-L pathway enzymes pyruvate-
ferredoxin oxidoreductase (PFOR) and pyruvate formate lyase
(PFL) are sensitive to very low levels of oxygen (Meinecke et al.,
1989; Ragsdale and Wood, 1991; Bock et al., 1996; Brown et al.,
1998; Becker et al., 1999; Imlay, 2009; Yang et al., 2009; Nakayama
et al., 2013; Shen et al., 2017). In order to use microorganism
to convert the components of industrial waste gas to a value-
added product, O2 has to be removed first, a step which is cost
prohibitive (Liew et al., 2016).

Parageobacillus thermoglucosidasius is a facultative anaerobic
thermophile which is able to produce H2 and CO2 via
the water-gas shift (WGS) when grown in the presence
of a gas mixture consisting of CO and air (Mohr et al.,
2018a,b) (Figure 1). Initially P. thermoglucosidasius supports its
growth via aerobic respiration and once O2 is exhausted, it
shifts to the anaerobic WGS pathway (Mohr et al., 2018a,b).
This metabolic shift makes P. thermoglucosidasius a potential
biological tool for the removal of O2 from syngas mixtures
to be utilized in subsequent anaerobic production of value-
added products. Furthermore, the CO2 and H2 produced by this
organism can serve as substrates for the production of chemical
compounds, such as ethanol, butanol, butyric acid, acetate and
methane (Drake et al., 2006; Köpke et al., 2010; Liew et al.,
2016).

In the present study we have undertaken sequential
fermentation with P. thermoglucosidasius and C. ljungdahlii
and demonstrate the potential of using an O2-depleting
facultative anaerobe to facilitate the anaerobic production of
value-added products from an artificial waste gas, a gas mixture
containing both CO and O2.

MATERIALS AND METHODS

Microorganisms and Media
P. thermoglucosidasius DSM 6285 and Clostridium
ljungdahlii DSM 13528T were obtained from the Deutsche
Sammlung von Mikroorganismen und Zellkulturen (DSMZ,
Braunschweig, Germany).

P. thermoglucosidasius DSM 6285 was cultivated in mLB
(modified Luria-Bertani) medium (g/l): tryptone (10), yeast
extract (5), NaCl (5); 1.25 ml/l NaOH (10% w/v), and 1 ml/l of
each of the filter-sterilized stock solutions 1.05 M nitrilotriacetic
acid, 0.59 M MgSO4·7H2O, 0.91 M CaCl2·2H2O, and 0.04 M
FeSO4·7H2O (Zeigler, 2001). A first (20 ml mLB medium) pre-
culture was grown for 24 h and a second (20 ml mLB medium)
pre-culture was inoculated to an absorbance (OD600) of 0.1 from
the first pre-culture and incubated for 4 h. Both pre-cultures
were grown aerobically at 60◦C and 120 rpm (Infors Thermotron,
Infors AG, Bottmingen, Switzerland) in 20 ml mLB. Serum
bottles (Glasgerätebau Ochs, Bovenden, Germany), closed with

FIGURE 1 | Schematic pathway of the combined WGS reaction and

Wood-Ljungdahl pathway. The blue boxes depict each pathway separately,

while the black box shows the result of the combined reactions in our

particular set-up. Fd, oxidized ferredoxin; Fd2−, reduced ferredoxin; [H],

reduction equivalents. Dotted lines depict a multiple-step reaction.

gas-tight butyl rubber stoppers and secured with an aluminum
seal were used (Carl Roth+ Co. KG, Karlsruhe, Germany).

Clostridium ljungdahlii DSM 13528T was pre-cultured in
modified GA-based medium (Groher and Weuster-Botz, 2016)
containing (g/l): 2-(N-morpholino) ethansulfonic acid (MES)
(20), / NH4Cl (1), KCl (0.3), KH2PO4 (0.23), MgSO4·7H2O
(0.5), NaCl (2.25), yeast extract (2), CaCl2·2H2O (0.15), and
resazurin (0.001). The pH of the medium was adjusted to 6.0
with KOH, and distributed in serum bottles. These were then
closed with gas-tight butyl rubber stoppers and secured with
an aluminum seal, and anaerobized. The anaerobization process
was performed as follows: a needle, which was connected to a
vacuum/gas line, was inserted through the septum; then, vacuum
was applied to a final pressure of 10 psi (absolute), holding for
40 s, followed by pressurizing the bottles to 30 psi (absolute) using
a gas mixture containing 20 vol-% carbon dioxide in nitrogen
(Air Liquide, France). Following this, vacuum was applied again,
and the whole process was repeated for 20 cycles. The bottles
were then autoclaved closed. After autoclaving, the following
solutions were added to the bottles (g/L): cysteine HCl·H2O
(1), fructose (10); 1 ml/l of trace element solution (mg/L):
FeSO4·7H2O (4000), Na2SeO3·5H2O (3), Na2WO4·2H2O (4),
FeCl2·4H2O (3000), ZnCl2 (140), MnCl2·4H2O (200), H3BO3

(12), CoCl2·6H2O (380), CuCl2·2H2O (4), NiCl2·6H2O (48),
Na2MoO4·2H2O (72), and 10 ml/l of vitamin solution (mg/L):
biotin (4), folic acid (4), pyridoxine (20), thiamine-HCl·2H2O
(10), riboflavin (10), nicotinic acid (10), calcium pantothenate
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(10), cobalamin (0.2), 4-aminobenzoic acid (10), and lipoic acid
(10). To ensure sterility and anaerobic conditions, all additions
to the autoclaved bottles were done using sterile syringes and
needles, and piercing through the septum. All stock solutions
were prepared and anaerobized as described above.

For pre-cultivation of C. ljungdahlii a glycerol stock (1 ml) was
transferred anaerobically to a serum bottle containing 50 ml of
anaerobic, sterile GAmedium (prepared as above) and incubated
for 48 h. A total of 5 ml of the latter culture was transferred
anaerobically to 50 ml of fresh GA medium and cultivated at
37◦C and 120 rpm for 24 h. The latter step was repeated to
generate the inoculum for the sequential culture. The glycerol
stocks were prepared in sterile, anaerobic hungate-type tubes
which were closed with gas-tight rubber septa and secured with
a perforated screw cap. In order to anaerobically transfer the
glycerol stock and to inoculate the following cultures, sterile
syringes and needles were used. The withdrawal of the liquid
and its addition to the following serum bottle was performed by
piercing through the septum.

Experimental Set Up
Stoppered serum flasks (250 ml), gas-tight and prepared as
above, containing 50 ml of modified Luria Bertani (mLB)
medium and with an initial gas atmosphere of CO and air
(50:50 ratio) were inoculated with 1 ml of second pre-culture
of P. thermoglucosidasius and cultivated for 70 h at 60◦C and
120 rpm. Subsequently, 5 ml of the C. ljungdahlii pre-culture
(OD600 = 2.5) was added to the P. thermoglucosidasius culture.
Immediately before inoculating with C. ljungdahlii, 50 µl of
GA trace elements, to the same final concentration as the
GA medium, were added to each bottle to ensure that all
elements necessary for the growth of C. ljungdahlii were present.
Incubation of the P. thermoglucosidasius/C. ljungdahlii cultures
were performed at 37◦C and 120 rpm. The experiments were
performed in quadruplicate for a duration of 240 h.

Analytical Methods
Growth was routinely monitored by taking 1 ml culture
samples twice per day and performing absorbance (OD600)
measurements using an Ultrospec 1100 pro spectrophotometer
(Amersham Biosciences, USA). Acetate concentrations were
similarly monitored using the Roche Yellow line enzymatic
assay (Hoffmann- La Roche, Switzerland). To measure the gas
composition in the bottles at each sampling point, a 5ml gas
sample was withdrawn with a syringe from the headspace of
the bottle. The bottles were kept at the incubating temperature
for the specific microorganism by means of a water bath. The
sample was then immediately injected into a 300 Micro GC
gas analyzer (Inficon, Bad Ragaz, Switzerland) with columns
Molsieve and PLOT Q. Throughout the total analysis time of
180 s, the temperature was maintained constantly at 80◦C.

Pressure was measured before and after sample taking
using a manometer (GDH 14 AN, Greisinger electronic,
Regenstauf, Germany). Gas composition was calculated
using the ideal gas law as previously described (Mohr
et al., 2018a). The acetate yield was calculated based
on Bengelsdorf et al. (2013).

RESULTS

Pre-culturing With P. thermoglucosidasius

Supports the Anaerobic Growth of
C. ljungdahlii
In the first phase of the sequential fermentation
P. thermoglucosidasius was grown in 50 ml modified Luria
Bertani (mLB) medium with an initial gas atmosphere of
CO and air (50:50) (Figure 2). After 70 h, when all O2 was
consumed, the culture reached an absorbance (OD600) of 0.732
± 0.027 and pH of 6.21 ± 0.04 (Figure 2A). Previously we
have observed that when the O2 is consumed, the growth of
P. thermoglucosidasius also plateaus (Mohr et al., 2018a,b).
To ensure that the increase of OD600 and acetate during the
second phase is not due to P. thermoglucosidasius on its own, a
control experiment without the addition of C. ljungdahlii was
conducted (Figure S1). When C. ljungdahlii was added to the
P. thermoglucosidasius culture 70 h after the first phase, the
P. thermoglucosidasius/C. ljungdahlii sequential culture reached
a maximum absorbance of 1.316 ± 0.157 ∼23 h after the latter
culture was added (Figure 2A). This indicates that the strict
anaerobe C. ljungdahlii is able to grow in the medium after
P. thermoglucosidasius exhausts the O2 from the gas atmosphere.
The medium pH dropped drastically once C. ljungdahlii was
added, from a pH of 6.20 ± 0.04 pre-addition to a pH of 5.61 ±
0.05 post-addition of the latter strain (Figure 2A). However, the
pH continued to decline throughout the experiment, which can
be correlated to active metabolism and acetate production by
C. ljungdahlii.

Sequential Cultivation With
P. thermoglucosidasius and C. ljungdahlii

Facilitates Acetate Production
In the post-aerobic phase P. thermoglucosidasius consumed
2.050 ± 0.117 mmol of CO, while 2.055 ± 0.023 and
2.646 ± 0.147 mmol of H2 and CO2 were produced via
the WGS, respectively. Here, an equimolar conversion
of CO to H2 was achieved. Subsequently, both H2 and
CO decreased rapidly, being exhausted ∼83 h after
C. ljungdahlii was added. Similarly, CO2 decreased,
although 1.479 ± 0.058 mmol CO2 were left at the end
of the cultivation (after 240 h), due to the fact that
2 moles of H2 are needed per mol of CO2 as per the
stoichiometry of the W-L pathway: 2 CO2 + 4 H2 →

CH3COOH+ 2 H2O (Ragsdale, 2008).
The decrease in the amount of these three gasses correlated

with an increase in the amount of acetate. Some acetate (0.47 ±

0.07 mmol) was already observed during the first phase. This may
be linked to mixed acid fermentation by P. thermoglucosidasius
(Hussein et al., 2015). However, when P. thermoglucosidasius
was cultivated on its own, no further increase in acetate was
observed (Figure S1). The addition of C. ljungdahlii resulted
in a spike in acetate (1.01 ± 0.17 mmol—an increase of 0.54
± 0.22 mmol). This is associated with acetate production by
C. ljungdahlii in the pre-culture in GA medium containing
fructose as carbon source (Tirado-Acevedo et al., 2011). To
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FIGURE 2 | Growth and pH (A) and gas composition and acetate production (B) of the sequential cultivation of P. thermoglucosidasius and C. ljungdahlii. The dotted

line presents the inoculation of C. ljungdahlii. (A) The measured OD600 (dark green) increased after 70 h, and at the same time the pH (black) decreased due to the

inoculation with C. ljungdahlii. Growth continued until 93 h (23 h after inoculation with the second organism), and then it plateaued. As a result of the metabolic activity,

the culture broth was acidified to a pH of 5.2. (B) O2 (blue) had already been consumed before the second phase, but some CO (dark red) was still left. After inoculation

with C. ljungdahlii, CO2 (olive), and H2 (gray) did not accumulate any further, since they were used as building blocks by C. ljungdahlii to produce acetate (orange).

shorten the time of inoculation of C. ljungdahlii, a washing
step was not performed to avoid any potential lag phase due
to stressing of the cells. Nevertheless, the amount of acetate
increased concomitantly with H2, CO and CO2 consumption
during the second phase, reaching a final amount of 1.53
± 0.09 mmol of acetate. The acetate produced exclusively
by C. ljungdahlii was, therefore, 0.52 mmol. This suggests
that in the absence of additional exogenous carbon sources
C. ljungdahlii could successfully use the H2 and CO2 produced
by P. thermoglucosidasius as building blocks for acetate via the
W-L pathway.

From the WLP, the theoretical maximum yield is 0.25mol
acetate/mol CO (Bengelsdorf et al., 2013). Considering the initial
amount of CO in the bottles, 3.3 ± 0.216 mmol in average, a
total theoretical maximum of 0.8 mmol of acetate could have
been produced. The yield of acetate in the C. ljungdahlii phase
in this study was 0.16mol acetate/mol CO, achieving a 63% of
the theoretical maximum.

DISCUSSION AND CONCLUSION

Microbial conversion of syngas into value-added chemicals may
provide a sustainable and cost-effective alternative to current

industrial strategies. However, most known syngas fermenters
are strict anaerobes, which impacts the use of syngas sources
which contain even low concentrations of O2. Besides, very
few acetogens have been shown to tolerate only trace amounts
of O2 (Karnholz et al., 2002; Takors et al., 2018). As such,
expensive and often environmentally unfriendly O2 removal
steps are necessary to facilitate effective syngas bioconversion
(Heijstra et al., 2017). Here we have demonstrated that the
facultative anaerobe P. thermoglucosidasius provides a biological
means for the removal of toxic concentrations of O2, which
allowed for the subsequent growth of the strict anaerobe
C. ljungdahlii. Moreover, the production of H2 and CO2 by
P. thermoglucosidasius via the WGS reaction provides the
building blocks for the synthesis of acetate by C. ljungdahlii via
the W-L pathway.

The utilization of a thermophile in the first phase of this
process presents some additional advantages in that hot flue
gasses resulting from industrial processes will not need to be
cooled down to such a great extent. Most pertinently, the
consumption of CO enables a near stoichiometric conversion of
CO to H2 and CO2, without CO being lost in biomass formation
(Mohr et al., 2018a) unlike in other CO-oxidizing organism,
where CO is also used for biomass formation (O2 + 2.19 CO→
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1.83 CO2 + 0.36 cell carbon) (Ragsdale, 2004). In this study the
consumed CO during the first phase was completely converted
to H2 and CO2 by P. thermoglucosidasius without CO being
used for acetate production or growth. Hence, more substrate
for the acetogenesis is available. With the sequential cultivation,
a total amount of 1 mmol of acetate was produced. From this,
the amount of acetate derived from the initial CO amounted to
0.52 mmol, which represents a 63% of the maximum theoretical
yield. The overall yield of the established sequential culture is
thus higher than by using other CO metabolizing organisms
(King and Weber, 2007).

The sequential fermentation system presented here may
thus serve as the basis for establishing as a cost-effective
and environmentally friendly methodology for the production
of value-added chemicals where it circumvents some of the
pitfalls of working with strict anaerobic syngas fermenters while
simultaneously linking the fermentative pathways of different
taxa for the production of value-added chemicals by a second
organism (Figure 1) (Takors et al., 2018). Future research will
optimize the set-up and evaluate the application of this sequential
fermentation with P. thermoglucosidasius and other mesophilic
and thermophilic anaerobic bacteria for the production of a wide
variety of bulk chemicals.
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