75 research outputs found

    De novo valve tissue morphology following bioscaffold mitral valve replacement in a juvenile non-human primate model

    Get PDF
    The utility of implanting a bioscaffold mitral valve consisting of porcine small intestinal submucosa (PSIS) in a juvenile baboon model (12 to 14 months old at the time of implant; n = 3) to assess their in vivo tissue remodeling responses was investigated. Our findings demonstrated that the PSIS mitral valve exhibited the robust presence of de novo extracellular matrix (ECM) at all explantation time points (at 3-, 11-, and 20-months). Apart from a significantly lower level of proteoglycans in the implanted valve’s annulus region (p \u3c 0.05) at 3 months compared to the 11-and 20-month explants, there were no other significant differences (p \u3e 0.05) found between any of the other principal valve ECM components (collagen and elastin) at the leaflet, annulus, or chordae tendinea locations, across these time points. In particular, neochordae tissue had formed, which seamlessly integrated with the native papillary muscles. However, additional processing will be required to trigger accelerated, uniform and complete valve ECM formation in the recipient. Regardless of the specific processing done to the bioscaffold valve, in this proof-of-concept study, we estimate that a 3-month window following bioscaffold valve replacement is the timeline in which complete regeneration of the valve and integration with the host needs to occur

    Non-invasive Vagus Nerve Stimulation in Healthy Humans Reduces Sympathetic Nerve Activity

    Get PDF
    Background: Vagus nerve stimulation (VNS) is currently used to treat refractory epilepsy and is being investigated as a potential therapy for a range of conditions, including heart failure, tinnitus, obesity and Alzheimer's disease. However, the invasive nature and expense limits the use of VNS in patient populations and hinders the exploration of the mechanisms involved. Objective: We investigated a non-invasive method of VNS through electrical stimulation of the auricular branch of the vagus nerve distributed to the skin of the ear – transcutaneous VNS (tVNS) and measured the autonomic effects. Methods: The effects of tVNS parameters on autonomic function in 48 healthy participants were investigated using heart rate variability (HRV) and microneurography. tVNS was performed using a transcutaneous electrical nerve stimulation (TENS) machine and modified surface electrodes. Participants visited the laboratory once and received either active (200 μs, 30 Hz; n = 34) or sham (n = 14) stimulation. Results: Active tVNS significantly increased HRV in healthy participants (P = 0.026) indicating a shift in cardiac autonomic function toward parasympathetic predominance. Microneurographic recordings revealed a significant decrease in frequency (P = 0.0001) and incidence (P = 0.0002) of muscle sympathetic nerve activity during tVNS. Conclusion: tVNS can increase HRV and reduce sympathetic nerve outflow, which is desirable in conditions characterized by enhanced sympathetic nerve activity, such as heart failure. tVNS can therefore influence human physiology and provide a simple and inexpensive alternative to invasive VNS

    Silicon central pattern generators for cardiac diseases

    Get PDF
    Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin–Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease

    Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation—tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure

    Full text link

    Doing the Right Thing

    No full text

    De Novo Valve Tissue Morphology Following Bioscaffold Mitral Valve Replacement in a Juvenile Non-Human Primate Model

    Get PDF
    The utility of implanting a bioscaffold mitral valve consisting of porcine small intestinal submucosa (PSIS) in a juvenile baboon model (12 to 14 months old at the time of implant; n = 3) to assess their in vivo tissue remodeling responses was investigated. Our findings demonstrated that the PSIS mitral valve exhibited the robust presence of de novo extracellular matrix (ECM) at all explantation time points (at 3-, 11-, and 20-months). Apart from a significantly lower level of proteoglycans in the implanted valve’s annulus region (p < 0.05) at 3 months compared to the 11- and 20-month explants, there were no other significant differences (p > 0.05) found between any of the other principal valve ECM components (collagen and elastin) at the leaflet, annulus, or chordae tendinea locations, across these time points. In particular, neochordae tissue had formed, which seamlessly integrated with the native papillary muscles. However, additional processing will be required to trigger accelerated, uniform and complete valve ECM formation in the recipient. Regardless of the specific processing done to the bioscaffold valve, in this proof-of-concept study, we estimate that a 3-month window following bioscaffold valve replacement is the timeline in which complete regeneration of the valve and integration with the host needs to occur
    • …
    corecore