64 research outputs found

    Measurements of generated energy/electrical quantities from locomotion activities using piezoelectric wearable sensors for body motion energy harvesting

    Get PDF
    In this paper, two different piezoelectric transducers—a ceramic piezoelectric, lead zirconate titanate (PZT), and a polymeric piezoelectric, polyvinylidene fluoride (PVDF)—were compared in terms of energy that could be harvested during locomotion activities. The transducers were placed into a tight suit in proximity of the main body joints. Initial testing was performed by placing the transducers on the neck, shoulder, elbow, wrist, hip, knee and ankle; then, five locomotion activities—walking, walking up and down stairs, jogging and running—were chosen for the tests. The values of the power output measured during the five activities were in the range 6 W–74 W using both transducers for each joint.Web of Science164art. no. 52

    Model-Driven Development of Groupware Systems

    Get PDF
    Building Collaborative systems with awareness (or groupware) is a very complex task. This article presents the use of the domain specific language CSSL v2.0 - Collaborative Software System Language -built as an extension of UML, using the metamodeling mechanism. CSSL provides simplicity, expressiveness and precision to model the main concepts of collaborative systems, especially collaborative processes, protocols and awareness. The CSSL concrete syntax is defined via a set of editors through which collaborative systems models are created. According to the MDD methodology, models are independent of the implementation platform and are formally prepared to be transformed. The target of the transformation is a web application that provides a set of basic functions that developers can refine to complete the development of the collaborative system. Finally, evaluation, validation and verification of the language is performed, determining that the CSSL tools allow developers to solve central aspects of collaborative systems implementation in a simple and reasonable way

    Modelado de Derivación de Código para el Desarrollo de Sistemas Colaborativos con Awareness

    Get PDF
    La construcción de sistemas colaborativos con awareness es una tarea muy compleja. En este artículo se presenta la forma de utilización del lenguaje específico de dominio CSSL v2.0 -Collaborative Software System Language- construido como extensión de UML, usando el mecanismo de metamodelado. Se analiza la simplicidad, expresividad y precisión del lenguaje para modelar los conceptos principales de los sistemas colaborativos, especialmente los procesos colaborativos, protocolos y awareness. A partir de casos de modelado se muestra una sintaxis concreta -editores gráficos- que permiten construir modelos de sistemas colaborativos. Estos son independientes de la plataforma de implementación y están formalmente preparados para derivarlos utilizando transformaciones MDD. Luego se presenta una semántica del lenguaje a través de transformaciones de modelo a texto donde se obtiene versiones Web con tecnologías JavaScript, MongoDB y Websockets. Esto aporta a los desarrolladores de Sistemas Colaborativos un conjunto de herramientas que les permiten por un lado modelar los sistemas y por otro obtener aplicaciones ejecutables con aspectos centrales resueltos como la implementación de procesos colaborativos, awareness y el control de las operaciones que los roles realizan en el sistema

    MEASURING REGULARITY OF FINE UPPER LIMB MOVEMENTS WITH A HAPTIC PLATFORM FOR MOTOR LEARNING AND REHABILITATION

    Get PDF
    Robot-assisted systems for arm training are being increasingly used to target moderate-to-severe upper limb impairments in rehabilitation facilities, while hand fine motor skills are seldom being targeted by these machines. This manuscript describes and tests the feasibility of a system based on a haptic interface aimed to complement the efficacy of robotic training in the rehabilitation and motor learning associated with upper extremities movements. End-effector kinematics associated with different trajectory tasks performed by 11 healthy adults were used to extract measures of smoothness, under different testing conditions that included the presence or absence of visual and haptic feedback, the use of dominant vs. non dominant hand, different shapes (crosses and circles), and the verse with which movements were done. The normalized mean square jerk, extracted from the system together with specific speed parameters, was able to capture differences in regularity between the different shapes (MSJratio significantly higher when drawing crosses, p < 1.0 E-4), and that haptic feedback significantly influences this smoothness measure (MSJratio significantly higher when haptic feedback is present, p < 5.0 E-4). The proposed system may be used as a means to monitor the progress of movement regularity in robot-mediated therapy, and the results obtained experimentally highlight the influence of haptic feedback on the smoothness of finalized upper extremity fine movements

    MEASURING REGULARITY OF FINE UPPER LIMB MOVEMENTS WITH A HAPTIC PLATFORM FOR MOTOR LEARNING AND REHABILITATION

    Get PDF
    Robot-assisted systems for arm training are being increasingly used to target moderate-to-severe upper limb impairments in rehabilitation facilities, while hand fine motor skills are seldom being targeted by these machines. This manuscript describes and tests the feasibility of a system based on a haptic interface aimed to complement the efficacy of robotic training in the rehabilitation and motor learning associated with upper extremities movements. End-effector kinematics associated with different trajectory tasks performed by 11 healthy adults were used to extract measures of smoothness, under different testing conditions that included the presence or absence of visual and haptic feedback, the use of dominant vs. non dominant hand, different shapes (crosses and circles), and the verse with which movements were done. The normalized mean square jerk, extracted from the system together with specific speed parameters, was able to capture differences in regularity between the different shapes (MSJratio significantly higher when drawing crosses, p < 1.0 E-4), and that haptic feedback significantly influences this smoothness measure (MSJratio significantly higher when haptic feedback is present, p < 5.0 E-4). The proposed system may be used as a means to monitor the progress of movement regularity in robot-mediated therapy, and the results obtained experimentally highlight the influence of haptic feedback on the smoothness of finalized upper extremity fine movements

    USING PVDF FILMS AS FLEXIBLE PIEZOELECTRIC GENERATORS FOR BIOMECHANICAL ENERGY HARVESTING

    Get PDF
    In this paper, a commercial polymeric piezoelectric film, the polyvinylidene fluoride (PVDF) was used to harvest electrical energy during the execution of five locomotion activities (walking, going down and up the stairs, jogging and running). The PVDF film transducer was placed into a tight suit in proximity of four body joints (shoulder, elbow, knee and ankle). The RMS values of the power output measured during the five activities were in the range 0.1 – 10 µW depending on the position of the film transducer on the body. This amount of electrical power allows increasing the operation time of wearable systems, and it may be used to prolong the monitoring of human vital signals for personalized health, wellness, and safety applications

    Real time event-based segmentation to classify locomotion activities through a single inertial sensor

    Get PDF
    We propose an event-based dynamic segmentation technique for the classification of locomotion activities, able to detect the mid-swing, initial contact and end contact events. This technique is based on the use of a shank-mounted inertial sensor incorporating a tri-axial accelerometer and a tri-axial gyroscope, and it is tested on four different locomotion activities: walking, stair ascent, stair descent and running. Gyroscope data along one component are used to dynamically determine the window size for segmentation, and a number of features are then extracted from these segments. The event-based segmentation technique has been compared against three different fixed window size segmentations, in terms of classification accuracy on two different datasets, and with two different feature sets. The dynamic event-based segmentation showed an improvement in terms of accuracy of around 5% (97% vs. 92% and 92% vs. 87%) and 1-2% (89% vs. 87% and 97% vs. 96%) for the two dataset, respectively, thus confirming the need to incorporate an event-based criterion to increase performance in the classification of motion activities

    Shifts in wood anatomical traits after a major hurricane

    Get PDF
    •1. Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance. •2. To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre- and posthurricane periods. We also assessed correlations between traits and growth rates. •3. While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates. •4. Ultimately, within-individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances

    A Preconditioning Paradox : Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes

    No full text
    Fungal interactions during leaf decomposition can facilitate or inhibit other fungi. This experiment focused on whether preconditioning of leaf litter by microfungi that were confined to one leaf (Unit-Restricted) made leaf litter less likely to be colonized and decomposed by basidiomycetes that bind litter into mats (Non-Unit-Restricted) than non-preconditioned litter. Leaves of Manilkara bidentata in litterbags were preconditioned by incubating them for 0, 1, 2 or 3 months in flat litter/seed rain baskets 10 cm above the forest floor to avoid colonization by basidiomycete fungi. Preconditioned and non-preconditioned leaves were transferred to 5 replicate basidiomycete fungal mats of Gymnopus johnstonii for 6 weeks. Both attachment by basidiomycete fungi and percent mass loss after 6 weeks decreased significantly with increasing preconditioning time. In non-preconditioned leaves, gamma irradiation did not affect mass loss or percent white-rot despite having significantly increased numbers of basidiomycete fungal connections as compared to non-irradiated leaves. In non-preconditioned leaves, more basidiomycetes attachmented to non-irradiated than irradiated leaves suggest facilitation by phyllosphere microfungi. While basidiomycete colonization was initially facilitated by phyllosphere fungi, we inferred that degradation of resource quality led to fewer fungal attachments and less mass loss after 1-3 months of preconditioning by microfungi. The date suggest there is a 1-month time window for basidiomycete fungi to incorporate fallen leaves into their litter mats
    corecore