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ABSTRACT 

We propose an event-based dynamic segmentation technique for 

the classification of locomotion activities, able to detect the mid-

swing, initial contact and end contact events. This technique is 

based on the use of a shank-mounted inertial sensor incorporating 

a tri-axial accelerometer and a tri-axial gyroscope, and it is tested 

on four different locomotion activities: walking, stair ascent, stair 

descent and running. Gyroscope data along one component are 

used to dynamically determine the window size for segmentation, 

and a number of features are then extracted from these segments. 

The event-based segmentation technique has been compared 

against three different fixed window size segmentations, in terms 

of classification accuracy on two different datasets, and with two 

different feature sets. The dynamic event-based segmentation 

showed an improvement in terms of accuracy of around 5% (97% 

vs. 92% and 92% vs. 87%) and 1-2% (89% vs. 87% and 97% vs. 

96%) for the two dataset, respectively, thus confirming the need to 

incorporate an event-based criterion to increase performance in 

the classification of motion activities. 
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1. INTRODUCTION 
Inertial sensors are gaining increasing popularity in medical 
applications due to their low power, cost and miniature size [1]. 
Several applications in human motion analysis, activity monitoring 
and classification benefit from the use of sensors including 
accelerometers, gyroscopes and magnetometers [2, 3]. In principle, 
the research focus is now directed towards the data processing and 
information retrieval. 

On-body sensors are collecting and continuously outputting 

streams of data and one important task is to process this incoming 

data stream into segments, in order to be able to associate, to each 

segment, some relevant information associated with the activity 

that is monitored within that segment. In the past, various methods 

have been applied to divide the signal into segments, the most 

common ones among them being the use of fixed window length 

and the application of event-based windows. 

In the first class of techniques, the signal is divided into 

consecutive windows of fixed length. In the case of locomotion 

activities, used lengths lie in the range (1-10) s [4, 5, 6, 7, 8], and 

the presence of overlapping between consecutive windows is 

usually limited to 50%. One limitation of this approach is that 

problems can arise if an activity lasts for shorter or longer time 

periods than the pre-defined window length. 

With the event-based segmentation, foot-off or foot strike events 

are used to dynamically define the length of the successive 

windows: the size of the windows thus depends on the type and 

duration of the activity. A number of different approaches have 

been proposed for identifying either foot strike or foot-off (or 

possibly both events) from body-worn sensor signals. 

In terms of gait event detection, a gyroscope placed at the shank 

has been proven to be acceptably accurate in healthy gait walking 

up and down an incline [9] and in pathological [10, 11] and in 

healthy gait when walking on level ground [10, 12]. Gyroscope 

placed on the foot and on the shank has been used for locomotion 

pattern classification, including descending and ascending stairs 

[13, 14, 15], and it was concluded that it is possible to detect the 

gait events from the locomotion activities performed by the 

subjects. 

Apart from fixed length segmentation, event-based segmentation 

techniques generally use a small fixed-length window to identify 

the events within one gait cycle (initial contact, flat foot or foot-

off) [16, 17, 18]. Chen et al. extracted all peaks (mid-swing) from 

the signal and used the center of two consecutive peaks to identify 

the foot-flat segment [13]. In [19] foot-off event was detected 

based on the local minimum search from the expected foot-off 

point to zero-crossing of the next swing phase. To the best of our 

knowledge, there is no study yet which has evaluated the effect of 

a dynamic event-based segmentation with respect to static 

segmentation on the ability to classify human locomotion 

activities.   

This study thus analyses and compares the classification accuracy 

obtained through an event-based dynamic segmentation against 

different fixed window lengths, on the classification of daily 

living activities including walking, stair ascent, stairs descent and 

running. In order to tune the event detection to these locomotion 

activities (that were not limited to level walking, but included stair 

negotiation), we modified the gait detection criterion in such a 

way that no window is used to detect the events. Then these 

events are used to define a signal segment that represents the 

whole activity cycle, to be used for the classification of 

locomotion activities. 

2. MATERIALS AND METHODS 
In order to evaluate the segmentation across different conditions, 

we used two different datasets: one directly collected within the 

research activity associated with this contribution, and one 
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obtained as a benchmark dataset, publicly available. Details are 

reported in the next two subsections. 

2.1 Data collection (BioLab³ dataset) 
Nine healthy adults (29 ± 5 years) were recruited for this study. 

Participants were equipped with an inertial measurement unit that 

included an ADXL345 tri-axial accelerometer (±4g) and an 

ITG3200 tri-axial gyroscope (2000 rad/s), fixed on the shank 

(distal position) of the dominant leg.  

Experiments were carried out in the university building, except 

running, which was performed outside the building. All 

participants were asked to carry out activities at their self-selected 

speed on a predefined route. This route includes a walking path of 

50 meters  opening and closing a door  descending stairs on a 

staircase of 46 steps  few walking steps  opening and closing a 

door  running (outside the building along a path of about 100 

meters)  opening and closing a door  ascending stairs  

opening and closing a door  walking. Participants were asked to 

stand still for few seconds between each activity. Data were 

collected at a sampling rate of 100 Hz and labeled with ground 

truth knowledge.  

2.2   Benchmark data (PAMAP2 dataset) 
The PAMAP2 dataset was also used to check the validity of the 

method. This dataset is composed of different activities from 9 

participants. For the purposes of this study, we only picked those 

activities that could be compared with the other database of interest 

(walking, stair ascent, stair descent and running). We took data 

coming from the ankle-mounted sensor (a tri-axial accelerometer 

and a tri-axial gyroscope) only, which is at a slightly lower position 

as compared to the sensor position used in the BioLab³ dataset. 

Further information about the dataset is available [20]. 

2.3  Event-based signal segmentation 
In this study, signal segmentation is based on the detection of gait 

events. There are some characteristics that are common across 

different locomotors activities (walking, stairs descend, stairs 

ascend and running) like swing phase, stance phase etc. The shape 

of the swing phase (maximum peak) in the gyroscope signal has 

consistency throughout the signal followed by the lower peak of 

the stance phase. Each activity cycle for this activity subset is 

composed of a swing phase and a stance phase, and they can be 

identified by considering mid-swing (MS), initial contact (IC), and 

end contact (EC) events. There is a mutual agreement that foot-off 

event is the minimum value of the negative peak before swing 

phase peak and this foot-off event is used to identify the start and 

end of the gait cycle [11].  

The algorithm is designed to detect these three events to find a 

single cycle from the raw gyroscope angular component along the 

sagittal plane. The segmentation is called real-time as it is done by 

sample by sample evaluation to detect the gait events. The whole 

procedure for event detection is defined in Table 1. 

Each activity cycle (segment) is then defined by using consecutive 

EC events. For comparison, also fixed length widows were 

considered (with values of the window length equal to 1, 1.25 and 

1.5 s, respectively). 

2.4 Feature extraction and selection 
Segments identified with the above-mentioned rules were taken as 

the reference for all the remaining inertial data. For each segment, 

a set of time and frequency domain features that are used in the 

literature for the activity recognition problem were derived from 

each axis and magnitude of the accelerometer and gyroscope signal 

[5, 21]. A total number of 138 features were then extracted.  

Linear forward feature selection (LFFS) technique was then 

applied to get the relevant features set from the extracted features 

[22]. Selected features are mentioned in Table 2. A total number of 

30 features (FS1) were selected by the algorithm from BioLab³ 

dataset and 24 features (FS2) from PAMAP2 dataset. 

Table 1. Heuristic rules for the activity event detection 

Activity 
Events 

Rules 

Mid-
swing 
(MS) 

MS is based on four conditions 

i. Find zero crossing when the signal is ascending 
(negative-cross) 

ii. Update maximum value just after the above condition 

meet 
iii. Find zero crossing when signal is descending 

(positive-cross) 

If Maximum value between two crossing ≥ 2 rad/s then 

save negative-cross, positive-cross (current value) and mid-

swing (maximum value) 

else search zero cross in ascending 

Initial 
contact 
(IC) 

IC is the minimum just after the positive-cross  
When current value fulfill this condition: 

i.  ( )   (   ) 
Then,     ( ) 

End 
contact 
(EC) 

First minimum value is min_value = IC 
Algorithm starts searching for max_value and min_value. 
Max_value condition: 

 ( )   (   )         (              )    
                 ( ) 

Min_value condition: 

 ( )   (   ) 
                 ( ) 

If the current value  ( ) is min_value then algorithm goto  

EC condition: 

    ([                      ])         
                        

       ([                ( )           ])    
If above condition is satisfied then  

    ( ) 
else update local minimum & maximum and meet the EC 
condition. 

y(j) is the current value of the gyroscope, min_index and max_index are the 

indices of min & max values, min_index_array(1) is the index of the 1st 

minimum value, representing IC. 

Table 2. Selected features from accelerometer (A) and 
gyroscope (G) for the two feature sets 

Features FS1 FS2 

Time domain 

Mean A (x, y, mag) A (y, mag), G (mag) 

Median A (y), G (y, z)  

St. deviation A (x, y), G (z) G (z) 

Skewness A (z), G (z) A (y), G (z) 

Correlation A (x_z, x_mag), 

G (x_mag, y_mag, z_mag) 

A (y_mag), G (x_z, 

x_mag, z_mag) 

Inverse cosine  G (x) 

Interquartile   A (y), G (x) 

Frequency domain 

Mean A (mag) A (mag), G (mag) 

St. deviation A (x, y), G (mag) A (mag), G (mag) 

Skewness G (x) G (mag) 

Kurtosis G (z) A (mag) 

Energy A (x) G (z) 

1st five FFT 

components 

A_x (2), A_y (2, 5), G_y 

(4), G_z (1, 2, 4) 
G_z (2, 3, 4, 5) 



So in our study we have two feature sets FS1 and FS2 for each 

dataset. The purpose of selecting features from different datasets is 

to check whether the selection on one dataset would affect the 

classification accuracy rate of the other dataset respectively, as the 

position of the sensors in the two datasets was different. 

2.5 Classification and performance evaluation 
We tested the classification performance of a multilayer 

perceptron neural network (MLP) classifier on the extracted 

features by using WEKA toolbox. Features extracted from each 

segment were passed to the MLP to classify the activity, where 

each segment (gait cycle) was classified as either walking, stairs 

ascend, stairs descend or running activity. Different settings of the 

classifier were tested, and the best performance was achieved with 

the following parameters: 500 training epochs, learning rate of 0.3 

and momentum of 0.2 to update the weights. A number of studies 

pointed out the positive performance of the MLP in activity 

recognition problem [4, 23]. 

Leave-one-out cross-validation criteria was used to evaluate the 

performance of the classifier: data of one subject were used as the 

testing, while the rest of the subjects data were used for training; 

this process was repeated for all the subjects. The final result 

represents the average accuracy over all subjects. 

3. RESULTS  

3.1 Segmentation results 

Figure 1 shows a sample of the results of the event-based 

segmentation algorithm over walking, stairs ascend, stairs descend 

and running activities. As it can be seen, events were detected 

accurately, with a limited variation depending on the activity type. 

        Walking   Stairs descending 

  

           Stairs ascending Running 

  

Figure 1. Gait events detection over four locomotors activities, 
where green, pink and red points represent MS, IC and EC 

respectively. 

In particular, the algorithm mis-detected only 5 activity cycles 

(out of 1752): among them, one walking and one stairs ascend 

cycle was not identified because of lower MS; in one walking, 

stairs ascend and stairs descend cycle EC were not identified. All 

the running activity cycles were correctly identified. 

3.2 Classification results  
In order to understand the performance of the dynamic window 

(gait cycle), we compared the activity classification accuracy 

obtained from features extracted with the event-based 

segmentation technique with the ones extracted with different 

sizes of the fixed length window. For a fair comparison, sizes of 

the fixed length window were selected on the basis of the average 

activity cycle duration, and in such a way that the overall number 

of records would be similar to the number of records extracted 

from the event-based segmentation technique. Table 3 reports the 

average activity cycle duration as estimated with the segmentation 

technique, and the number of records that were used with the 

event-based segmentation and the different fixed length 

segmentation values. 

Table 3. Activity cycle duration over different activities 

Measures   Activity cycle duration (s) 

 Walk SD SA Run 

Mean 1.165 1.134 1.24 0.719 

St. deviation 0.101 0.143 0.158 0.035 

 Windows  

 1 s 1.25 s 1.5 s Dynamic  

No. of records 1994 1583 1320 1752 

Readings show variations in activity cycle duration within the 

activities and within the subjects and none of the activity last for 

1.5 s (100 samples /s). On the basis of the number of records 

(extracted window), comparison between the dynamic, 1 s and 

1.25 s windows would be more interesting, as the number of 

records is similar to the ones of the dynamic segmentation. 

Activity classification accuracy results will be reported into two 

different sections, corresponding to the two different datasets. 

3.2.1 BioLab³ dataset 
Figure 2 shows that the average performance of the dynamic 

window is higher than all static windows in both cases.  

Classification performance of the dynamic window on FS1 and 

FS2 is pretty high (> 95% and > 90%, respectively), with less 

variation among the subjects. Whereas, accuracy obtained on 1s 

and 1.25 s windows is less than 90%, giving high variation among 

the subjects. 1.5 s window performance is high from the rest of 

the static windows but a significant difference from dynamic 

window.   

3.2.2 PAMAP2 dataset 
For this second dataset, performance on different segmentation 

methods is less than 90% on FS1 while on FS2 accuracy increases 

significantly. Figure 3 shows the classification accuracy on 

PAMAP2 dataset. 

Event-based dynamic segmentation performs slightly better than 

1.5 s fixed window size window with both feature sets, and it is 

associated with a slightly higher variability than 1.5 s window size 

for FS1. 

 
Figure 2. Classification accuracy for BioLab³ dataset 

In regards to the datasets, classification accuracy was shown to 

depend on the feature set. As the sensor position is different in the 

two used datasets, feature set obtained on one dataset might be not 

good enough to represent the information for the other one. In the 
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BioLab³ dataset, however, the average accuracy obtained with 

both feature sets has been shown to be higher than 90% for the 

event-based segmentation. 

 
Figure 3. Classification accuracy for PAMAP2 dataset 

4. DISCUSSION 
We evaluated the activity recognition performance on two 

datasets with different segmentation methods and feature sets. 

Four different locomotion activities were targeted in our dataset 

that were also present in the benchmark dataset. 

We found that the proposed event-based dynamic segmentation 

technique correctly identifies almost all the activity events (>99% 

in both datasets). Catalfamo et al. algorithm detected more than 

98% correct events in level and incline walking [9] and Formento 

et al. obtained values higher than 93% in stairs walking [16]. 

Salarian et al. found 100% correct gait events in walking activity, 

where algorithm detects swing phase peak and find initial and end 

contact events within backward and forward windows from swing 

peak [11] and similar method is used in [13]. All mentioned 

studies detect the events based on small windows and only Chen 

et al classified the activities and reported average accuracy higher 

than 93% [13]. Regarding the classification results, performance 

of the neural network on the proposed event-based dynamic 

segmentation is higher (>95%) than that obtained with the 

relevant fixed window sizes. While a number of studies 

encouraged the use of fixed window size segmentation for activity 

recognition problem, the results obtained in this work seem to go 

in the other direction, as these results are better than the ones 

obtained by Hong et al. [6] (93.78%), Lee et al. [8] (86-92%, with 

10 s of window size) and Wang et al. (93.3%) [7]. Fixed window 

size can thus be sub-optimal when activities last for significantly 

shorter or longer time periods than the window length, or when 

activity durations vary over time. To compensate for this problem, 

event-based dynamic segmentation is a viable solution, if it is 

sufficiently accurate in detecting events. 
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