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Abstract  
Robot-assisted systems for arm training are being increasingly used to target moderate-to-severe upper limb impairments 
in rehabilitation facilities, while hand fine motor skills are seldom being targeted by these machines. This manuscript 
describes and tests the feasibility of a system based on a haptic interface aimed to complement the efficacy of robotic 
training in the rehabilitation and motor learning associated with upper extremities movements. End-effector kinematics 
associated with different trajectory tasks performed by 11 healthy adults were used to extract measures of smoothness, 
under different testing conditions that included the presence or absence of visual and haptic feedback, the use of dominant 
vs. non dominant hand, different shapes (crosses and circles), and the verse with which movements were done. The 
normalized mean square jerk, extracted from the system together with specific speed parameters, was able to capture 
differences in regularity between the different shapes (MSJratio significantly higher when drawing crosses, p < 1.0 E-4), 
and that haptic feedback significantly influences this smoothness measure (MSJratio significantly higher when haptic 
feedback is present, p < 5.0 E-4). The proposed system may be used as a means to monitor the progress of movement 
regularity in robot-mediated therapy, and the results obtained experimentally highlight the influence of haptic feedback 
on the smoothness of finalized upper extremity fine movements.  
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Introduction 
 

Brain diseases can cause difficulties in motor control, 
affecting everyday life quality of patients. Among them, 
stroke is the leading cause of disability, as its prevalence 
is around 3 percent of the population: in 2010, it has 
been estimated that about 33 million people suffer from 
stroke in the world, with a survival rate that exceeds 
80% [1]. Most stroke survivors can experience consequ-
ences on language, motor control of limbs and other 
functions associated with neural activity. When dealing 
with a post-stroke individual, rehabilitation therapy, 
which is usually based on best practices, can last up to a 
few months [2]. As for many human-mediated activities, 
in this kind of therapy it is not always easy to reach a 
high level of measurability and repeatability, but 
therapists can interpret patients' needs and satisfy them 

with the flexibility given by their experience and 
professional skills. Different strategies can be used by 
the physical therapist, and there is an open debate about 
which paradigm is most effective: among others, the 
most popular is the so-called “constraint-induced 
movement therapy” (CIMT) [3], where movements of 
the unaffected limb are selectively restrained, to 
promote movement of the affected side. The possibility 
to recover lost functions due to neural damage through 
physical therapy is allowed by the so-called “neural 
plasticity”, which is based on recruiting survived 
additional neural cells. Neural plasticity also plays a 
major role when individuals are asked to perform motor 
tasks in novel environmental conditions, such as visual 
distortions [4], or altered force fields [5].  

Following this perspective, in the early nineties, an 
electromechanical machine with a control system based 
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on a computer program was proposed [6] as a possible 
means to train arm movements in stroke survivors, by 
providing force fields through a robot, based on the idea 
that repeating movements in unexperienced conditions 
would help rebuild damaged motor functions in the 
brain: developing this idea, the so-called MIT-Manus 
opened up the use of robotics for rehabilitation. In the 
last decade, many different machines have been 
designed and realised for the same purpose: MIME [7], 
ARM Guide [8], ARMin [9], Braccio di ferro [10]. In 
most of these robots, force fields can be generated to 
assist or make more difficult the trajectory being 
performed by the patient, inducing altered sensations of 
viscosity through tactile perception [11], and this is why 
the above systems are considered haptic [12]. 

In terms of clinical use of the robot-mediated therapy, 
Lo et al. [13] reported that in patients with long-term 
upper limb deficits after stroke, the outcomes improved 
over a longer time range (36 weeks) as compared with 
standard therapy. This highlighted the utility of 
administering the therapy for a longer time, possibly 
also outside the hospital walls [14]. Most of the systems 
used to administer therapy at home provide an auditory, 
visual, or augmented feedback to the patient at home, 
based on a number of tasks to be performed, and they do 
not generally include haptic feedbacks, thus limiting the 
impact of rehabilitation at home to a specific class of 
therapies, targeting recovery of cognitive skills, and 
leaving out physical therapy after stroke. 

Some commercial platforms are now able to provide 
the user with the sense of touch (see for instance the 
Phantom Desktop [15] and Falcon [16]). While these 
systems are more commonly used in medicine special-
ties, outside the field of physical therapy (minimally 
invasive surgery [17], dentistry [18]), it could be useful 
to introduce a new therapeutic system based on one of 
these interfaces, which are often (reasonably) cheaper, 
smaller and easier to use and control than the robotic 
systems listed previously. Depending on the mechanical 
characteristics of the haptic interface, the new system 
could complement or replace the robotic systems used 
in rehabilitation facilities nowadays. Moreover, in 
everyday living, patients normally perform movements 
in a 3D space, and interact with common objects coping 
with the vertical force due to arm and objects weight. 
From a neurological perspective, it is agreed that the 
differences of neural correlates between horizontal and 
vertical movements of the arm [19] show that motor 
control features may significantly vary when vertical 
forces come into play, also because there are striking 
differences in the way the brain is able to adapt to 
distortions between horizontal and vertical symmetries 
[20]. Thus, it is necessary that these systems let the users 
perform 3-D motor tasks. 

Regardless of the kind of therapy to be provided 
through the device, a system that has to be used routinely 
in physical therapy at home, or as a means to monitor 
the progress of motor skill learning [21], needs to 
incorporate a recording section able to capture the 

kinematics of the movement that is being done. Only in 
this way it is possible to provide the user with a feedback 
that represents the kinematics that is captured, and to use 
these data to monitor the dynamics of the process, 
through the extraction of some metrics of motor 
recovery. Flash and Hogan hypothesized that, in 
presence of goal-directed movements, humans aim at 
producing them with the smoothest possible movement 
of the end effector [22]. As the maximization of 
smoothness can be obtained by producing trajectories 
with minimum jerk (the time derivative of acceleration), 
different metrics associated with jerk have been 
introduced to quantify the ability to coordinate goal 
directed movements. Movement smoothness is high 
when tasks are executed by healthy individuals, tends to 
disappear in stroke survivors [23], and it may reappear 
as a sign of motor recovery [24]. Different metrics have 
thus been introduced to quantify the extent of 
smoothness from kinematic data, such as the number of 
peaks from velocity profiles [25], measures in the 
frequency domain [26, 27, 28, 29] such as the relative 
amount of the velocity power spectral density in specific 
frequency bands, and the distance from an idealized 
bell-shaped velocity profile [30]. Among them, an 
agreed measure is based on some integral value coming 
from the jerk, on the evidence that high values of jerk 
correspond to higher variations of acceleration, which, 
in turns, make a trajectory less smooth. 

While research on the use of force fields to generate 
haptic feedbacks usually focused on large movements, 
fine movements performed by the upper extremities are 
somewhat less studied [31]. Following this perspective, 
this study will test the feasibility of a platform based on 
a commercially available haptic device (Falcon® by 
Novint Technologies, inc.), able to provide the user with 
a visual and haptic feedback, as a tool to monitor end 
effector kinematics and movement smoothness in 
different conditions. Among those, specific external 
force fields have been designed to investigate the 
influence of haptic feedback on movement smoothness. 

 
Experimental Section  

 
In the following subsections, a description of the 

proposed system will be presented, then the adopted 
procedure will be shown, and finally the data analysis 
will be detailed. 
 
System design 
 

The system is made of two connected main parts: the 
Falcon interface, and the processing and control station. 
The interface has an almost spherical handle that can be 
shifted inside a three-dimensional workspace (volume 
10 cm x 10 cm x 10 cm approx.), where the handle can 
be moved to describe trajectories similar to those drawn 
by the hand moving simple tools to be used in everyday 
life. With reference to the haptic and force feedback, the 
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device can apply forces up to about 10 N on the handle 
in any direction inside the workspace. As reported by 
different studies that focused on the characterization of 
the Falcon [32, 33], forces are generated with an actua-
tion frequency of 1000 samples/s. 

A USB 2.0 port allows the PC to control the handle 
and record data, 3D position of the handle among others. 
When used, the visual feedback has been provided by a 
red moving circle on a display plane π that follows the 
projection of the handle displacement on the mea-
surement plane π’: in the case of visual feedback, the 
screen also showed the area (a light blue ring) within 
which the handle was supposed to move (see figure 1). 

 
Fig. 1: Experimental set-up during a trial (haptics 
dataset): π’ is the measurement plane (coronal), π is 
the display plane.  
 

 
Participants and procedure 
 

In the first set of tests, denoted as Feasibility dataset, 
each participant was requested to draw specific trajec-
tories (i.e. circles and crosses) under different conditi-
ons, to test the accuracy of the system as a means to 
extract smoothness measures data in point-to-point 
movements. Circles and crosses trajectories were 
considered, as it was hypothesized that they would entail 
a substantial difference in movement regularity. 

In the second set of tests, denoted as Haptics dataset, 
circle exercises were repeated in presence of different 
feedback modalities, including visual and haptic 
feedback: in the visual feedback conditions, the 
participants were allowed to look at a screen represent-
ting the performed trajectory and the target circle; in the 
haptic feedback conditions, a facilitating haptic force 
field was applied, generating a radial and centripetal 
force with intensity proportional to the distance from the 
target circumference.  

Eleven healthy volunteers (age range 26-40 years, 
2 women, 2 left-handed) were recruited, and informed 
about the procedure. Upon their assent, they were 
allowed to practice for about one minute to familiarize 
with the platform, and know the limits of the workspace: 
they were asked to avoid the workspace borders when 

doing the exercises. Then, they underwent the trials, and 
they were told to freely choose their own speed to draw 
the trajectories. In both datasets, each exercise was 
composed of 5 repetitions of each trajectory under the 
following conditions: the use of dominant or non-
dominant hand, the use of visual feedback (open or 
closed eyes), the verse of motor task (outward or 
inward-first), the plane, chosen to be parallel to the 
major anatomical planes, and the shape they were 
requested to draw in the space (circles or crosses). 

 
Tab. 1: Experimental procedure: description of the 
dataset. 
 

Dataset Haptics Shape Vision Hand Rot* 

Feasibility 
dataset** 

No 
haptics 

feedback 

Circles 

Eyes 
open 

Dominant In 
Out 

Non 
dominant 

In 
Out 

Eyes 
closed 

Dominant In 
Out 

Non 
dominant 

In 
Out 

Crosses 

Eyes 
open 

Dominant In 
Out 

Non 
dominant 

In 
Out 

Eyes 
closed 

Dominant In 
Out 

Non 
dominant 

In 
Out 

Haptics 
dataset 

No haptic 
feedback Circles 

Visual 
feedback 

Dominant In 
Out 

Non 
dominant 

In 
Out 

Eyes 
closed 

Dominant In 
Out 

Non 
dominant 

In 
Out 

Haptic 
feedback Circles 

Visual 
feedback 

Dominant In 
Out 

Non 
dominant 

In 
Out 

Eyes 
closed 

Dominant In 
Out 

Non 
dominant 

In 
Out 

- For each dataset, 16 different conditions administered. 
- All conditions randomized, except the hand (dominant first). 
**Exercises repeated along the anatomical planes. 
*Rotation verse: Out - Outward first; In - Inward first. 

 

 
Conditions were randomized, with the exception of 

asking the volunteers to perform movements with the 
dominant hand first, to familiarize with the system, and 
then to perform them with the non-dominant hand. A 
graphical representation of the trajectories to be drawn 
is shown in figure 2. In the Haptics dataset, only circle 
trajectories in the coronal plane were considered, while 
the presence or absence of haptic feedback was added as 
a condition. The procedure of recruitment and data 
recording was approved by the department governing 
body, and in compliance with the Helsinki Declaration. 
Details on the conditions are listed in table 1. 
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Fig. 2: Example of trajectories that were requested to 
be drawn by a right-handed subject in the Feasibility 
dataset: In-first circles along the three different 
planes (left panel), and Out-first crosses along the 
three different planes (right panel).  

 
Data analysis 
 

Raw data of handle position were logged and recorded 
at a sampling frequency of 166 samples/s. Position data 
were processed to get kinematics. A third-order 
Butterworth filter (cut-off frequency 8.3 Hz) was 
applied to the set of extracted values of each variable. 
From position data, velocity, acceleration, and jerk 
along the three directions were calculated. From the jerk 
components Jx, Jy, Jz, the magnitude of the jerk was 
calculated as J(t) = √(Jx

2+ Jy
2+ Jz

2), and used as the 
starting variable from which smoothness parameters are 
calculated. In particular, we chose the normalization of 
the mean-squared jerk ratio (MSJratio) [34], where the 
mean squared jerk (MSJ) is divided by the minimum 
value of mean squared jerk (MSJmin), defined as the 
(MSJ) for a trajectory where the 6th derivative of the 
displacement is null [35]: in this way, it is possible to 
compare smoothness for trajectories that entail different 
path lengths and movement durations. MSJratio was thus 
calculated according to the relation: 

. 
(1) 

where the jerk J(t) is integrated along the duration 
interval d, and A is the amplitude of movement. In 
particular, for circle movements, A corresponds to the 
target circle circumference, while for the cross 
trajectories, it was considered as 4l, where l is the length 
of the target cross bar. Data of the 11 healthy volunteers 
were collected and the logarithm of MSJratio for each 
exercise (data averaged over 5 repetitions for each 
exercise) was calculated. Considering both datasets, and 
all conditions, for each volunteer participating to the 
Feasibility dataset the total number of exercises summed 
at 48 (16 different conditions, repeated along three 
different orthogonal planes), whereas the volunteers 
participating at the Haptics dataset were requested to 
perform a total of 16 exercises. On this latter dataset, 
two additional speed parameters were included: the peak 
value of the speed magnitude (PS); and the speed metric 

(SM), a normalized and dimensionless version of the 
average speed magnitude obtained by dividing it by PS 
[25], which has been recently used in combination with 
the Novint Falcon [36]. 
 
Statistical analysis 
 

In the Feasibility dataset, MSJratio calculated for the 16 
different conditions shown in table 1 underwent statis-
tical analysis; for each group, the results coming from 
the exercises performed along the three different planes 
were grouped, as no statistical differences appeared 
among the three conditions in a preliminary analysis: 
MSJratio values in the Feasibility dataset underwent 
multiple-way ANOVA by considering the verse with 
which (and the hand with which) the subjects performed 
the movement, together with the presence of the visual 
feedback, and the kind of shape (i.e. crosses and circles) 
as factors. In the Haptics dataset, MSJratio, PS, and SM 
underwent multiple-way ANOVA by considering verse, 
hand, the presence of the haptic and visual feedbacks as 
factors. For both datasets, normality was verified 
through Kolmogorov-Smirnov test, and only one-level 
interactions were checked. 
 
 
Experimental results  

Fig. 3: Excerpt of kinematic data from two different 
circle trajectories performed by a subject: from top 
to bottom, displacement along one direction, absolute 
value of the velocity, acceleration along the same 
direction of the  displacement graph, jerk absolute 
value.  

 
Feasibility dataset 
 

An example of trajectories recorded in the feasibility 
dataset is illustrated in figure 3. Descriptive statistics 
and ANOVA results for MSJratio extracted from raw data 
collected during each exercise for all the participants are 
reported in table 2.  
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Higher values of MSJratio resulted for all the trajec-
tories described when executing crosses (p < 1.0 E-4). 
This happens almost independently from the verse, and 
is also fairly independent from the hand with which 
exercises were executed. 

 

Tab. 2: Feasibility dataset: descriptive statistics and 
ANOVA results for MSJratio 
 

Condition 

Circles – 
eyes 

closed 
(μ±σ) 

Circles – 
eyes 
open 
(μ±σ) 

Non dominant hand – in 5.92±0.52 5.85±0.54 
Non dominant hand – out  5.91±0.62 5.96±0.69 

Dominant hand – in 6.10±0.61 6.43±0.63 
Dominant hand – out  6.04±0.58 6.33±0.61 

Condition 

Crosses – 
eyes 

closed 
(μ±σ) 

Crosses – 
eyes 
open 
(μ±σ) 

Non dominant hand – in 7.59±0.63 7.62±0.68 
Non dominant hand – out  7.56±0.82 7.66±0.53 

Dominant hand – in 7.63±0.48 8.05±0.61 
Dominant hand – out  7.59±0.54 7.82±0.54 

All values in common log. 
Factor Significance 
Shape ** 
Vision ° 
Hand * 
Shape - 

Interaction Significance 
Hand x Vision ** 

** p < 0.005; * p<0.05; ◦ p<0.1; - n.s.. 
Only significant first-level interactions reported. 

 

 
Performing exercises with the dominant hand resulted 

in a significant increase of MSJratio, while vision did not 
determine a significant increase of MSJratio (p = 8.0 E-
2); the increase driven by the use of dominant hand 
resulted as depending on the presence of vision 
(interaction p = 4.2 E-2): when drawing circles, exer-
cises done with the dominant hand displayed higher 
values for MSJratio than those with the non-dominant. 
 
Haptics dataset 
 

The highest values of MSJratio resulted for the 
exercises done with haptic feedback and visual feed-
back, as reported in table 3. ANOVA confirms these 
observations: the influence of haptic feedback resulted 
significant (p = 4.0 E-4), so did the visual feedback (p = 
1.4 E-2). The use of dominant hand affects jerk values 
(p = 1.3 E-2). Moreover, the hand with which exercises 
are done determined changes in the effect of visual 
feedback (p = 5.8 E-3) but not of haptic feedback (p = 
1.4 E-1). In terms of movement execution, we observed 
a significant increase of the peak speed when haptic 
feedback is combined with the absence of vision (see 

figure 4). As for the speed metric, haptic feedback 
determines a significant decrease (p = 2.8 E-3) of the 
speed metric, regardless of using vision (see table 3). 

Fig. 4: Peak speed and speed metric values (group 
mean + standard deviation) in the four environment 
conditions (haptic and visual feedback).  

 

Tab. 3: Haptics dataset: descriptive statistics and 
ANOVA results for MSJratio 
 

Condition 
MSJratio 

No haptics – 
visual 

feedback 
(μ±σ) 

No haptics 
– eyes 
closed 
(μ±σ) 

Non dom. hand – in 5.77±0.50 5.96±0.72 
Non dom. hand – out  5.83±0.52 5.81±0.71 
Dominant hand – in 6.86±0.75 5.82±0.46 

Dominant hand – out  6.76±0.62 5.75±0.25 

Condition 
MSJratio 

Haptics – 
visual 

feedback 
(μ±σ) 

Haptics – 
eyes closed 

(μ±σ) 

Non dom. hand – in 7.74±0.68 7.46±0.65 
Non dom. hand – out  7.61±0.56 7.32±0.64 
Dominant hand – in 7.90±0.70 7.43±0.64 

Dominant hand – out  7.82±0.71 7.33±0.58 
All values in common log. 

Factor MSJratio PS SM 
Shape ** * ** 
Vision * ** - 
Hand * - - 
Verse - - - 

Interaction Significance  
Hand x 
Vision ** - - 

Haptics x 
Vision - ** - 

** p < 0.005; * p<0.05; - n.s.. 
Only significant first-level interactions reported. 
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Discussion 
 

There is a large debate as to which indicators 
calculated from J(t) need to be used, to take into account 
different durations, different amplitudes, and in general, 
different trajectories. We chose the normalization of the 
mean-squared jerk ratio MSJratio, as this parameter is 
considered able to evaluate smoothness or regularity of 
movements [34], where the increase in movement 
smoothness is agreed as a parameter associated with 
recovery [24] and, if appropriately normalized, strongly 
correlates with clinical scale scores [37].  

The rather small variance associated with MSJratio 
measurements extracted from the Feasibility dataset, 
irrespective of the plane along which the exercises were 
done, confirms that the platform is able to accurately 
extract smoothness measures in the proposed conditi-
ons. Jerk ratio values are in line with those obtained with 
other exercises [38], thus confirming the robustness of 
this parameter to those differences in the task execution 
that are not hypothesized as determining variations in 
movement smoothness. Shapes with inherent differen-
ces in smoothness, such as circles and crosses (crosses 
imply a number of starts and stops which, by definition, 
decrease regularity), determine clear changes in jerk 
values, and this confirms the ability of the proposed 
processing in quantifying smoothness measures. It is 
instead rather counterintuitive that vision increases jerk 
measures: this may be determined by a higher reliance 
on the feedback component of trajectory, which may 
determine a lower smoothness when vision is present. In 
regards to the resulting increase in jerk measures with 
the dominant hand, it is possible that the sequence used 
to perform exercises (dominant hand first, then non-
dominant) is a stronger factor than that coming from the 
inherent higher ability of the dominant hand in perfor-
ming smoother trajectories in learned tasks. As for the 
significant interaction between hand and vision, we do 
not have an explanation for this: it can be speculated 
that, in presence of vision, the feedback component may 
be different depending on dominance. 

In regards to the haptic dataset, the most influencing 
condition on movement regularity is the haptic feed-
back. This appeared both in the jerk values and in the 
two speed parameters, and it is acceptable considering 
that we involved healthy young individuals, and haptic 
feedback might be considered as a disturbing factor for 
motor control purpose. Visual feedback increases jerk 
and, in particular, it increases the jerk of exercises done 
with haptic feedback. Considering that in some cases 
vision may interfere with the execution of finalized 
upper limb movements [20], it can be speculated that 
this increase could be a consequence of an attempt to 
draw more accurate circles when visual feedback is 
present. This is also confirmed by a clear decrease of the 
peak speed when visual feedback is provided, if haptics 
is present. There is also an effect of dominance on 
smoothness, as if exercises done with the dominant hand 

were less smooth than those performed with the non-
dominant hand, and this reflects results obtained in the 
Feasibility dataset. At last, for both datasets, no 
significant effects of verse were found: this may be 
caused by the rather accurate sensorimotor human 
ability to adapt to altered conditions [39]. 

Regarding the experimental section, an observational 
approach has been sought in this study, asking the 
subjects to perform movements at their preferred speed 
and accuracy: this paradigm, though necessary to infer 
on the capacity of the system to handle different 
conditions, limits the interpretation of the results as to 
determining the causes associated with differences in 
movement smoothness: they may be associated with 
differences in execution time, and in the subjects' choice 
of accuracy role when drawing shapes. Moreover, the 
participant sample does not include elderly or post-
stroke individuals: possible differences in the response 
to the haptics feedback might emerge when dealing with 
these sample groups. This is a necessary step to be added 
in future researches, to determine whether the presence 
of the haptic feedback is helpful or detrimental to the 
execution of finalized movements of the upper 
extremities. The consideration that haptic feedback may 
not be needed if no pathologies are present – as it 
decreases movement regularity in young adults – could 
be a speculation based on the obtained results, and needs 
to be more deeply investigated on the cited groups. 

 
 
 

Conclusions 
 

Haptic machines may be useful tools for robot-
mediated therapy aimed to neuro-rehabilitation, and 
they could complement and integrate the activities of 
physical therapists. With the aim of targeting fine 
movements executed with the hand, in this research a 
haptic system was built up, exercises were done by 
healthy subjects, and collected data were used to extract 
jerk indicators to draw considerations about motor 
control of upper limb extremities. 

From the statistical analysis, differences appeared 
across subjects between the shapes with inherent 
different regularity, and the effect of visual and haptic 
feedback on movement smoothness brought to some 
differences: the study of jerk showed that MSJratio is 
higher for exercises done under haptic feedback conditi-
ons and the presence of visual feedback increases these 
values. The decline in smoothness when haptic feedback 
is present needs to be more deeply investigated on other 
sample groups, including healthy elderly people, and 
individuals recovering from stroke, as this result appears 
at odds with the hypothesis that haptics help 
“rebuilding" motor control mechanisms and may thus 
ultimately help improving movement smoothness. If 
these considerations will be confirmed by more studies 
on the cited sample groups, the conflict between jerk and 



 

11 
Lékař a technika 2016, Vol. 46(1), pp.5-12 
ISSN 0301-5491 (Print), ISSN 2336-5552 (Online) 

ORIGINAL RESEARCH 

trajectory accuracy should be taken into account in 
therapies mediated by haptic systems.  
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