30 research outputs found
Radon mitigation during the installation of the CUORE decay detector
CUORE - the Cryogenic Underground Observatory for Rare Events - is an
experiment searching for the neutrinoless double-beta () decay
of Te with an array of 988 TeO crystals operated as bolometers at
10 mK in a large dilution refrigerator. With this detector, we aim for a
Te decay half-life sensitivity of y
with 5 y of live time, and a background index of
counts/keV/kg/y. Making an effort to maintain radiopurity by minimizing the
bolometers' exposure to radon gas during their installation in the cryostat, we
perform all operations inside a dedicated cleanroom environment with a
controlled radon-reduced atmosphere. In this paper, we discuss the design and
performance of the CUORE Radon Abatement System and cleanroom, as well as a
system to monitor the radon level in real time.Comment: 10 pages, 6 figures, 1 tabl
The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures
The CUORE experiment is the world's largest bolometric experiment. The
detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg.
CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso,
Italy, searching for the neutrinoless double beta decay of 130Te. A large
custom cryogen-free cryostat allows reaching and maintaining a base temperature
of about 10 mK, required for the optimal operation of the detector. This
apparatus has been designed in order to achieve a low noise environment, with
minimal contribution to the radioactive background for the experiment. In this
paper, we present an overview of the CUORE cryostat, together with a
description of all its sub-systems, focusing on the solutions identified to
satisfy the stringent requirements. We briefly illustrate the various phases of
the cryostat commissioning and highlight the relevant steps and milestones
achieved each time. Finally, we describe the successful cooldown of CUORE
The H states studied in the reaction and evidence of extremely correlated character of the H ground state
The extremely neutron-rich system H was studied in the direct
H transfer reaction with a 26
MeV secondary He beam. The measured missing mass spectrum shows a
resonant state in H at MeV relative to the H+ threshold.
The population cross section of the presumably -wave states in the energy
range from 4 to 8 MeV is
b/sr in the angular range . The
obtained missing mass spectrum is free of the H events below 3.5 MeV
( b/sr in the same angular
range). The steep rise of the H missing mass spectrum at 3 MeV allows to
show that MeV is the lower limit for the possible resonant state
energy in H tolerated by our data. According to paring energy estimates,
such a MeV resonance is a realistic candidate for the H ground
state (g.s.). The obtained results confirm that the decay mechanism of the
H g.s.\ (located at 2.2 MeV above the H+ threshold) is the
``true'' (or simultaneous) emission. The resonance energy profiles and the
momentum distributions of the sequential H \,\rightarrow \,
^5H(g.s.)+n\, \rightarrow \, ^3H+ decay fragments were analyzed by the
theoretically-updated direct four-body-decay and sequential-emission
mechanisms. The measured momentum distributions of the H fragments in the
H rest frame indicate very strong ``dineutron-type'' correlations in the
H ground state decay.Comment: 9 pages, 11 figure
Study of Proton and Deuteron Pickup Reactions 2H(10Be,3He)9Li an 2H(10Be,4He)8Li with 44 A MeV 10Be Radioactive Beam at ACCULINNA-2 Fragment Separator
The proton and deuteron pickup reactions 2H(10Be,3He)9Li and\\
2H(10Be,4He)8Li radioactive beam produced by the new fragment separator
ACCULINNA-2 at FLNR, JINR\@. These measurements were initially motivated as
test reactions intended for the elucidation of results obtained in the study of
the extremely neutron-rich 7H and 6H systems created in the 2H(10Be,3He)9Li and
2H(10Be,4He)8Li reactions using the same setup. In the 2H(10Be,3He)9Li reaction
the 9Li ground-state () and its first excited state (2.69~MeV, )
were identified in the low-energy region of its excitation spectrum. The
differential cross sections for the 9Li g.~s.) population were extracted at
forward center-of-mass angles () and compared with the FRESCO
calculations. Spectroscopic factor of , derived by a model for the
10Be9Li(g.s.) clustering was found in accord with the experimental
data. The energy spectrum of 8Li populated in the 2H(10Be,4He)8Li reaction
shows the strong peak which corresponds to excitation of the second excited
state of 8Li (2.25 MeV, ). The fact that the ground and the first excited
states of 8Li were not observed is fully consistent with Shell-Model
calculations carried out for the 10Be g.\,s. and 8Li level structure applying
momentum selection rules
CUORE-0 detector: design, construction and operation
The CUORE experiment will search for neutrinoless double-beta decay ofTe with an array of 988 TeO bolometers arranged in 19 towers.CUORE-0, the first tower assembled according to the CUORE procedures, was builtand commissioned at Laboratori Nazionali del Gran Sasso, and took data fromMarch 2013 to March 2015. In this paper we describe the design, constructionand operation of the CUORE-0 experiment, with an emphasis on the improvementsmade over a predecessor experiment, Cuoricino. In particular, we demonstratewith CUORE-0 data that the design goals of CUORE are within reach
The CUORE slow monitoring systems
CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices
Radon mitigation during the installation of the CUORE 0νββ decay detector
CUORE - the Cryogenic Underground Observatory for Rare Events - is an experiment searching for the neutrinoless double-beta (0νββ) decay of Te with an array of 988 TeO crystals operated as bolometers at ∼10 mK in a large dilution refrigerator. With this detector, we aim for a Te 0νββ decay half-life sensitivity of 9×10 y with 5 y of live time, and a background index of 10 counts/keV/kg/y. Making an effort to maintain radiopurity by minimizing the bolometers' exposure to radon gas during their installation in the cryostat, we perform all operations inside a dedicated cleanroom environment with a controlled radon-reduced atmosphere. In this paper, we discuss the design and performance of the CUORE Radon Abatement System and cleanroom, as well as a system to monitor the radon level in real time. 130 130 25 -2
The CUORE slow monitoring systems
© Published under licence by IOP Publishing Ltd. CUORE is a cryogenic experiment searching primarily for neutrinoless double decay in 130 Te. It will begin data-taking operations in 2016. To monitor the cryostat and detector during commissioning and data taking, we have designed and developed Slow Monitoring systems. In addition to real-time systems using LabVIEW, we have an alarm, analysis, and archiving website that uses MongoDB, AngularJS, and Bootstrap software. These modern, state of the art software packages make the monitoring system transparent, easily maintainable, and accessible on many platforms including mobile devices