22,165 research outputs found

    On-line PCA with Optimal Regrets

    Full text link
    We carefully investigate the on-line version of PCA, where in each trial a learning algorithm plays a k-dimensional subspace, and suffers the compression loss on the next instance when projected into the chosen subspace. In this setting, we analyze two popular on-line algorithms, Gradient Descent (GD) and Exponentiated Gradient (EG). We show that both algorithms are essentially optimal in the worst-case. This comes as a surprise, since EG is known to perform sub-optimally when the instances are sparse. This different behavior of EG for PCA is mainly related to the non-negativity of the loss in this case, which makes the PCA setting qualitatively different from other settings studied in the literature. Furthermore, we show that when considering regret bounds as function of a loss budget, EG remains optimal and strictly outperforms GD. Next, we study the extension of the PCA setting, in which the Nature is allowed to play with dense instances, which are positive matrices with bounded largest eigenvalue. Again we can show that EG is optimal and strictly better than GD in this setting

    Single Spin Asymmetries in Semi-Inclusive Electroproduction: Access to Transversity

    Get PDF
    We discuss the quark transversity distribution function and a possible way to access it through the measurement of single spin azimuthal asymmetry in semi-inclusive single pion electroproduction on a transversely polarized target.Comment: 5 pages, Latex using aipproc.sty (included), to appear in proceedings of "Second Workshop on Physics with an Electron Polarized Light Ion Collider", Sept. 14-16, 2000, MIT, Cambridge, US

    Star Formation Rate from Dust Infrared Emission

    Get PDF
    We examine what types of galaxies the conversion formula from dust infrared (IR) luminosity into the star formation rate (SFR) derived by Kennicutt (1998) is applicable to. The ratio of the observed IR luminosity, LIRL_{\rm IR}, to the intrinsic bolometric luminosity of the newly (\la 10 Myr) formed stars, LSFL_{\rm SF}, of a galaxy can be determined by a mean dust opacity in the interstellar medium and the activity of the current star formation. We find that these parameters area being 0.5≤LIR/LSF≤2.00.5 \le L_{\rm IR}/L_{\rm SF} \le 2.0 is very large, and many nearby normal and active star-forming galaxies really fall in this area. It results from offsetting two effects of a small dust opacity and a large cirrus contribution of normal galaxies relative to starburst galaxies on the conversion of the stellar emission into the dust IR emission. In conclusion, the SFR determined from the IR luminosity under the assumption of LIR=LSFL_{\rm IR}=L_{\rm SF} like Kennicutt (1998) is reliable within a factor of 2 for all galaxies except for dust rich but quiescent galaxies and extremely dust poor galaxies.Comment: Accepted by ApJL: 6 pages (emulateapj5), 2 figures (one is an extra figure not appeared in ApJL

    The Recent Star Formation in NGC 6822: an Ultraviolet Study

    Get PDF
    We characterize the star formation in the low-metallicity galaxy NGC 6822 over the past few hundred million years, using GALEX far-UV (FUV, 1344-1786 A) and near-UV (NUV, 1771-2831 A) imaging, and ground-based Ha imaging. From GALEX FUV image, we define 77 star-forming (SF) regions with area >860 pc^2, and surface brightness <=26.8 mag(AB)arcsec^-2, within 0.2deg (1.7kpc) of the center of the galaxy. We estimate the extinction by interstellar dust in each SF region from resolved photometry of the hot stars it contains: E(B-V) ranges from the minimum foreground value of 0.22mag up to 0.66+-0.21mag. The integrated FUV and NUV photometry, compared with stellar population models, yields ages of the SF complexes up to a few hundred Myr, and masses from 2x10^2 Msun to 1.5x10^6 Msun. The derived ages and masses strongly depend on the assumed type of interstellar selective extinction, which we find to vary across the galaxy. The total mass of the FUV-defined SF regions translates into an average star formation rate (SFR) of 1.4x10^-2 Msun/yr over the past 100 Myr, and SFR=1.0x10^-2 Msun/yr in the most recent 10 Myr. The latter is in agreement with the value that we derive from the Ha luminosity, SFR=0.008 Msun/yr. The SFR in the most recent epoch becomes higher if we add the SFR=0.02 Msun/yr inferred from far-IR measurements, which trace star formation still embedded in dust (age <= a few Myr).Comment: Accepted for publication in ApJ, 21 pages, 6 figures, 3 table

    Collapse of orthotropic spherical shells

    Full text link
    We report on the buckling and subsequent collapse of orthotropic elastic spherical shells under volume and pressure control. Going far beyond what is known for isotropic shells, a rich morphological phase space with three distinct regimes emerges upon variation of shell slenderness and degree of orthotropy. Our extensive numerical simulations are in agreement with experiments using fabricated polymer shells. The shell buckling pathways and corresponding strain energy evolution are shown to depend strongly on material orthotropy. We find surprisingly robust orthotropic structures with strong similarities to stomatocytes and tricolpate pollen grains, suggesting that the shape of several of Nature's collapsed shells could be understood from the viewpoint of material orthotropy.Comment: 7 pages, 5 figure

    On Asymptotic Freedom and Confinement from Type-IIB Supergravity

    Get PDF
    We present a new type-IIB supergravity vacuum that describes the strong coupling regime of a non-supersymmetric gauge theory. The latter has a running coupling such that the theory becomes asymptotically free in the ultraviolet. It also has a running theta angle due to a non-vanishing axion field in the supergravity solution. We also present a worm-hole solution, which has finite action per unit four-dimensional volume and two asymptotic regions, a flat space and an AdS^5\times S^5. The corresponding N=2 gauge theory, instead of being finite, has a running coupling. We compute the quark-antiquark potential in this case and find that it exhibits, under certain assumptions, an area-law behaviour for large separations.Comment: 9 pages, latex, 1 figure v2: minor aesthetic changes v3: some scale factors corrected, version to appear in PL

    Suzaku Confirms NGC~3660 is an Unabsorbed Seyfert 2

    Get PDF
    An enigmatic group of objects, unabsorbed Seyfert 2s may have intrinsically weak broad line regions, obscuration in the line of sight to the BLR but not to the X-ray corona, or so much obscuration that the X-ray continuum is completely suppressed and the observed spectrum is actually scattered into the line of sight from nearby material. NGC 3660 has been shown to have weak broad optical/near infrared lines, no obscuration in the soft X-ray band, and no indication of "changing look" behavior. The only previous hard X-ray detection of this source by Beppo-SAX seemed to indicate that the source might harbor a heavily obscured nucleus. However, our analysis of a long-look Suzaku observation of this source shows that this is not the case, and that this source has a typical power law X-ray continuum with normal reflection and no obscuration. We conclude that NGC 3660 is confirmed to have no unidentified obscuration and that the anomolously high Beppo-SAX measurement must be due to source confusion or similar, being inconsistent with our Suzaku measurements as well as non-detections from Swift-BAT and RXTE.Comment: Accepted to PAS

    Tomographic Study of Internal Erosion of Particle Flows in Porous Media

    Full text link
    In particle-laden flows through porous media, porosity and permeability are significantly affected by the deposition and erosion of particles. Experiments show that the permeability evolution of a porous medium with respect to a particle suspension is not smooth, but rather exhibits significant jumps followed by longer periods of continuous permeability decrease. Their origin seems to be related to internal flow path reorganization by avalanches of deposited material due to erosion inside the porous medium. We apply neutron tomography to resolve the spatio-temporal evolution of the pore space during clogging and unclogging to prove the hypothesis of flow path reorganization behind the permeability jumps. This mechanistic understanding of clogging phenomena is relevant for a number of applications from oil production to filters or suffosion as the mechanisms behind sinkhole formation.Comment: 18 pages, 9 figure

    New HErschel Multi-wavelength Extragalactic Survey of Edge-on Spirals (NHEMESES)

    Full text link
    Edge-on spiral galaxies offer a unique perspective on the vertical structure of spiral disks, both stars and the iconic dark dustlanes. The thickness of these dustlanes can now be resolved for the first time with Herschel in far-infrared and sub-mm emission. We present NHEMESES, an ongoing project that targets 12 edge-on spiral galaxies with the PACS and SPIRE instruments on Herschel. These vertically resolved observations of edge-on spirals will impact on several current topics. First and foremost, these Herschel observations will settle whether or not there is a phase change in the vertical structure of the ISM with disk mass. Previously, a dramatic change in dustlane morphology was observed as in massive disks the dust collapses into a thin lane. If this is the case, the vertical balance between turbulence and gravity dictates the ISM structure and consequently star-formation and related phenomena (spiral arms, bars etc.). We specifically target lower mass nearby edge-ons to complement existing Herschel observations of high-mass edge-on spirals (the HEROES project). Secondly, the combined data-set, together with existing Spitzer observations, will drive a new generation of spiral disk Spectral Energy Distribution models. These model how dust reprocesses starlight to thermal emission but the dust geometry remains the critical unknown. And thirdly, the observations will provide an accurate and unbiased census of the cold dusty structures occasionally seen extending out of the plane of the disk, when backlit by the stellar disk. To illustrate the NHEMESES project, we present early results on NGC 4244 and NGC 891, two well studies examples of a low and high-mass edge-on spiral.Comment: 3 pages, 4 figures, to appear in the proceedings of IAU 284, "The Spectral Energy Distribution of Galaxies", (SED2011), 5-9 September 2011, Preston, UK, editors, R.J. Tuffs & C.C.Popescu (v2 updated metadata

    Correlation functions in a cascading N=1 gauge theory from supergravity

    Get PDF
    We study fluctuations around the warped conifold supergravity solution of Klebanov and Tseytlin [hep-th/0002159], known to be dual to a cascading N=1 gauge theory. Although this supergravity background is not asymptotically AdS, corresponding to a non-conformal field theory, it is possible to apply the usual methods of AdS/CFT duality to extract the high energy behavior of field theory correlators by solving linearized equations of motion for fluctuations around the background. We consider the Goldstone vector dual to the anomalous R-symmetry current and compute its mass, which exactly matches the general prediction of [hep-th/0009156]. We find the high energy 2-point functions for the R-current and two other vectors. As expected, the R-current 2-point function has a longitudinal part because R-symmetry is broken. We also calculate the high energy 2-point function of the energy-momentum tensor from fluctuations of modes in the graviton sector. This 2-point function has a trace part corresponding to broken conformal symmetry.Comment: JHEP, 29 page
    • …
    corecore