402 research outputs found

    The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells

    Get PDF
    This article is available open access under a Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Copyright @ 2012 Elsevier Inc.Lymphocytes provide optimal responses against pathogens with minimal inflammatory pathology. However, the intrinsic mechanisms regulating these responses are unknown. Here, we report that deletion of both transcription factors Egr2 and Egr3 in lymphocytes resulted in a lethal autoimmune syndrome with excessive serum proinflammatory cytokines but also impaired antigen receptor-induced proliferation of B and T cells. Egr2- and Egr3-defective B and T cells had hyperactive signal transducer and activator of transcription-1 (STAT1) and STAT3 while antigen receptor-induced activation of transcription factor AP-1 was severely impaired. We discovered that Egr2 and/or Egr3 directly induced expression of suppressor of cytokine signaling-1 (SOCS1) and SOCS3, inhibitors of STAT1 and STAT3, and also blocked the function of Batf, an AP-1 inhibitor, in B and T cells. Thus, Egr2 and Egr3 regulate B and T cell function in adaptive immune responses and homeostasis by promoting antigen receptor signaling and controlling inflammation.Arthritis Research U

    Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    Get PDF
    Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate that owing to higher biological activity, organic systems possess equal capabilities of supplying P for crop growth as are conventional systems with inputs of mineral P fertilizers

    Morally distressing experiences, moral injury, and burnout in florida healthcare providers during the covid-19 pandemic

    Get PDF
    Because healthcare providers may be experiencing moral injury (MI), we inquired about their healthcare morally distressing experiences (HMDEs), MI perpetrated by self (Self MI) or others (Others MI), and burnout during the COVID-19 pandemic. Participants were 265 healthcare providers in North Central Florida (81.9% female, Mage = 37.62) recruited via flyers and emailed brochures that completed online surveys monthly for four months. Logistic regression analyses investigated whether MI was associated with specific HMDEs, risk factors (demographic characteristics, prior mental/medical health adversity, COVID-19 protection concern, health worry, and work impact), protective factors (personal resilience and leadership support), and psychiatric symptomatology (depression, anxiety, and PTSD). Linear regression analyses explored how Self/Others MI, psychiatric symptomatology, and the risk/protective factors related to burnout. We found consistently high rates of MI and burnout, and that both Self and Others MI were associated with specific HMDEs, COVID-19 work impact, COVID-19 protection concern, and leadership support. Others MI was also related to prior adversity, nurse role, COVID-19 health worry, and COVID-19 diagnosis. Predictors of burnout included Self MI, depression symptoms, COVID-19 work impact, and leadership support. Hospital administrators/supervisors should recognize the importance of supporting the HCPs they supervise, particularly those at greatest risk of MI and burnout

    Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the "last" toothed birds.

    Get PDF
    BACKGROUND: The dentitions of extinct organisms can provide pivotal information regarding their phylogenetic position, as well as paleobiology, diet, development, and growth. Extant birds are edentulous (toothless), but their closest relatives among stem birds, the Cretaceous Hesperornithiformes and Ichthyornithiformes, retained teeth. Despite their significant phylogenetic position immediately outside the avian crown group, the dentitions of these taxa have never been studied in detail. To obtain new insight into the biology of these 'last' toothed birds, we use cutting-edge visualisation techniques to describe their dentitions at unprecedented levels of detail, in particular propagation phase contrast x-ray synchrotron microtomography at high-resolution. RESULTS: Among other characteristics of tooth shape, growth, attachment, implantation, replacement, and dental tissue microstructures, revealed by these analyses, we find that tooth morphology and ornamentation differ greatly between the Hesperornithiformes and Ichthyornithiformes. We also highlight the first Old World, and youngest record of the major Mesozoic clade Ichthyornithiformes. Both taxa exhibit extremely thin and simple enamel. The extension rate of Hesperornis tooth dentine appears relatively high compared to non-avian dinosaurs. Root attachment is found for the first time to be fully thecodont via gomphosis in both taxa, but in Hesperornis secondary evolution led to teeth implantation in a groove, at least locally without a periodontal ligament. Dental replacement is shown to be lingual via a resorption pit in the root, in both taxa. CONCLUSIONS: Our results allow comparison with other archosaurs and also mammals, with implications regarding dental character evolution across amniotes. Some dental features of the 'last' toothed birds can be interpreted as functional adaptations related to diet and mode of predation, while others appear to be products of their peculiar phylogenetic heritage. The autapomorphic Hesperornis groove might have favoured firmer root attachment. These observations highlight complexity in the evolutionary history of tooth reduction in the avian lineage and also clarify alleged avian dental characteristics in the frame of a long-standing debate on bird origins. Finally, new hypotheses emerge that will possibly be tested by further analyses of avian teeth, for instance regarding dental replacement rates, or simplification and thinning of enamel throughout the course of early avian evolution

    Increased Autonomic Reactivity and Mental Health Difficulties in COVID-19 Survivors: Implications for Medical Providers

    Get PDF
    Background Because there is a relationship between mental health (MH) and medical adversity and autonomic dysregulation, we hypothesized that individuals infected with COVID-19 would report greater current autonomic reactivity and more MH difficulties (emotional distress, mindfulness difficulties, and posttraumatic stress). We also hypothesized that individuals diagnosed with COVID-19 who are experiencing difficulties related to their prior adversity and those providing medical care to COVID-19 patients would be more negatively impacted due to their increased stress and infection rates. Method US participants (N = 1,638; 61% female; Age M = 46.80) completed online self-report measures of prior adversity, current autonomic reactivity and current MH difficulties, and COVID-19 diagnosis history. Participants diagnosed with COVID-19 (n = 98) were more likely to be younger and providing medical care to COVID-19 patients. Results Individuals diagnosed with COVID-19 reported increased current autonomic reactivity, being more negatively impacted by their prior MH/medical adversities, and currently experiencing more MH difficulties with an increased likelihood of clinically-significant PTSD and depression (p < 0.01 – p < 0.001). Current autonomic reactivity mediated 58.9% to 85.2% of the relationship between prior adversity and current MH difficulties; and COVID-19 diagnosis moderated and enhanced the effect of prior adversity on current autonomic reactivity (p < 0.01). Being a medical provider was associated with increased current autonomic reactivity (p < 0.01), while moderating and enhancing the relationship between current autonomic reactivity and emotional distress and posttraumatic stress symptoms (p < 0.05). Combining COVID-19 diagnosis with being a medical provider increased likelihood of clinically-significant PTSD and depression (p < 0.01). Conclusion Individuals diagnosed with COVID-19, particularly medical providers, have increased current autonomic reactivity that is associated with their prior adversities and current MH difficulties

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb
    corecore