70 research outputs found

    Circular Patch Antenna with Defected Ground for UWB Communication with WLAN Band Rejection

    Get PDF
    The design and performance of coplanar waveguide fed modified circular patch antenna for possible application in ultra wideband communication systems with band rejection for upper wireless local area network band (5.15 GHz - 5.85 GHz) is reported. This antenna is designed on glass epoxy FR4 substrate having size 30 mm × 20 mm × 1.59 mm. The coplanar waveguide fed circular patch antenna is modified by introducing L shaped slits in ground plane and U shaped slot in patch and performance analysis of antenna is simulated by applying CST microwave studio simulation software. Different designed antennas were tested with available experimental facilities. The developed end product shows a nice matching with feed network at frequencies 2.62 GHz, 3.94 GHz and 8.50 GHz and provides 10.38 GHz (3.33 GHz - 13.71 GHz) impedance bandwidth with wireless local area network 5.5 GHz (4.74 GHz - 6.15 GHz) band rejection. The co and cross polar patterns in elevation and azimuth planes at two frequencies namely 2.62 GHz and 3.94 GHz are obtained which dictate that co-polar patterns are significantly better than cross polar patterns. The simulated peak gain of antenna is close to 3.86 dBi and gain variation with frequency shows a sharp gain decrease in the frequency range 4.74 GHz to 6.15 GHz.

    Synthetic biodegradable alternatives to the use of the amniotic membrane for corneal regeneration: assessment of local and systemic toxicity in rabbits.

    Get PDF
    AIM: The aim of this study was to assess the local and systemic response to poly-lactic co-glycolic acid (PLGA) 50:50 membranes, developed as synthetic biodegradable alternatives to the use of human donor amniotic membrane in the treatment of limbal stem cell deficiency. METHODS: PLGA membranes of 2  cm diameter and 50  ”m thickness were placed on one eye of rabbits and secured in place using fibrin glue and a bandage contact lens, suturing the eye close with a single stitch. Control animals were treated identically, with the absence of the membranes. Plain and microfabricated electrospun membranes (containing micropockets which roughly emulate the native limbal niche) were examined over 29 days. All animals were subjected to a detailed gross and histopathological observation as well as a detailed examination of the eye. RESULTS: Application of the membranes both with and without microfabricated pockets did not adversely affect animal welfare. There was complete degradation of the membranes by day 29. The membranes did not induce any significant local or systemic toxicity. Conjunctival congestion and corneal vascularisation were noted in a few control and PLGA-treated animals. Intraocular pressure was normal and the retinal status was unaltered. The ocular surface was clear and intact in all animals by the end of 29  days. CONCLUSION: Membranes of 50:50 PLGA can be safely applied to rabbit corneas without inducing any local or systemic toxicity and these break down completely within 29 days

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for electroweak production of single top quarks in ppˉp\bar{p} collisions.

    Get PDF
    We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv

    Helicity of the W Boson in Lepton+Jets ttbar Events

    Get PDF
    We examine properties of ttbar candidates events in lepton+jets final states to establish the helicities of the W bosons in t->W+b decays. Our analysis is based on a direct calculation of a probability that each event corresponds to a ttbar final state, as a function of the helicity of the W boson. We use the 125 events/pb sample of data collected by the DO experiment during Run I of the Fermilab Tevatron collider at sqrt{s}=1.8 TeV, and obtain a longitudinal helicity fraction of F_0=0.56+/-0.31, which is consistent with the prediction of F_0=0.70 from the standard model

    Hard Single Diffraction in pbarp Collisions at root-s = 630 and 1800 GeV

    Get PDF
    Using the D0 detector, we have studied events produced in proton-antiproton collisions that contain large forward regions with very little energy deposition (``rapidity gaps'') and concurrent jet production at center-of-mass energies of root-s = 630 and 1800 Gev. The fractions of forward and central jet events associated with such rapidity gaps are measured and compared to predictions from Monte Carlo models. For hard diffractive candidate events, we use the calorimeter to extract the fractional momentum loss of the scattered protons.Comment: 11 pages 4 figures. submitted to PR

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome

    Get PDF
    Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals where it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologs. Using RNA-sequencing, we show how 5’ splice site usage is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 bp region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide
    • 

    corecore