24 research outputs found

    DREAM OF CASHLESS INDIA: BENEFITS & CHALLENGES

    Get PDF
    Cashless society is the concept where transactions involving money take place through digital mode and where there is no or very little use of hard cash. This research paper discusses the efforts of Government of India in promoting cashless transactions. Considering all these efforts, move towards digital India is no longer seems to remain just a dream. All over India steps are being taken to make this dream come true and the benefits that it will provide in long run are worth making these hard efforts. All these benefits have been discussed and the hurdles in path to the success of this programme have also been highlighted

    Relation between Preference for Local or Global Brands and Various Demographic Features of Consumer

    Get PDF
    Now a days, dilemma of choosing between local and global brands is faced while purchasing most of the goods be it be a needle or a sophisticated machinery. Good quality and affordable prices of goods of global brands are overpowering the local brands. It is seen that young generation is getting very much inclined towards the global brands and gradually local brands are finding it difficult to survive in market. Along with age many other factors are also responsible for this phenomenon. In this situation a study on various factors which are related with preference for local or global brands is need of the hour. For the purpose of study a questionnaire was developed and sent to respondents in order to find out whether actually there is any relationship between demographic factors of respondents and their choice between branded and local goods. On the bases of survey it was found out that, actually there is a relation between demographic factors of respondents and their choice between local and branded goods to a large extent

    Human TOP1 residues implicated in species specificity of HIV-1 infection are required for interaction with BTBD2, and RNAi of BTBD2 in old world monkey and human cells increases permissiveness to HIV-1 infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5α restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5α splice variant TRIM5Ύ in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.</p> <p>Results</p> <p>We show that the interaction of BTBD1 and BTBD2 with TOP1 requires <it>hu</it>-TOP1 residues 236 and 237, the same residues required to enhance the infectivity of progeny virions when <it>hu</it>-TOP1 is expressed in AGM producer cells. Additionally, interference with the expression of BTBD2 in AGM and human 293T target cells increased their permissiveness to HIV-1 infection two- to three-fold.</p> <p>Conclusions</p> <p>These results do not exclude the possibility that BTBD2 may modestly restrict HIV-1 infection via colocation with TRIM5 variants in cytoplasmic bodies.</p

    In situ observation of calcium oxide treatment of inclusions in molten steel by confocal microscopy

    Get PDF
    Calcium treatment of aluminum killed steel was observed in situ using high-temperature confocal scanning laser microscope (HT-CSLM). This technique along with a novel experimental design enables continuous observation of clustering behavior of inclusions before and after the calcium treatment. Results show that the increase in average inclusion size in non-calcium-treated condition was much faster compared to calcium-treated condition. Results also show that the magnitude of attractive capillary force between inclusion particles in non-treated condition was about 10−15 N for larger particles (10 ”m) and 10−16 N for smaller particles (5 ”m) and acting length of force was about 30 ”m. In the case of calcium-treated condition, the magnitude and acting length of force was reduced to 10−16 N and 10 ”m, respectively, for particles of all sizes. This change in attractive capillary attractive force is due to change in inclusion morphology from solid alumina disks to liquid lens particles during calcium treatment

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    Get PDF
    Introduction: Wheat (Triticum aestivum L.) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat yields and production affect the global economy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapting the crop to regionally specific biotic and abiotic stresses. Rationale: Breeding efforts are limited by insufficient knowledge and understanding of wheat biology and the molecular basis of central agronomic traits. To meet the demands of human population growth, there is an urgent need for wheat research and breeding to accelerate genetic gain as well as to increase and protect wheat yield and quality traits. In other plant and animal species, access to a fully annotated and ordered genome sequence, including regulatory sequences and genome-diversity information, has promoted the development of systematic and more time-efficient approaches for the selection and understanding of important traits. Wheat has lagged behind, primarily owing to the challenges of assembling a genome that is more than five times as large as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. To provide a foundation for improvement through molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out to deliver a high-quality annotated reference genome sequence of bread wheat. Results: An annotated reference sequence representing the hexaploid bread wheat genome in the form of 21 chromosome-like sequence assemblies has now been delivered, giving access to 107,891 high-confidence genes, including their genomic context of regulatory sequences. This assembly enabled the discovery of tissue- and developmental stage–related gene coexpression networks using a transcriptome atlas representing all stages of wheat development. The dynamics of change in complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. Aspects of the future value of the annotated assembly for molecular breeding and research were exemplarily illustrated by resolving the genetic basis of a quantitative trait locus conferring resistance to abiotic stress and insect damage as well as by serving as the basis for genome editing of the flowering-time trait. Conclusion: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding. Importantly, the bioinformatics capacity developed for model-organism genomes will facilitate a better understanding of the wheat genome as a result of the high-quality chromosome-based genome assembly. By necessity, breeders work with the genome at the whole chromosome level, as each new cross involves the modification of genome-wide gene networks that control the expression of complex traits such as yield. With the annotated and ordered reference genome sequence in place, researchers and breeders can now easily access sequence-level information to precisely define the necessary changes in the genomes for breeding programs. This will be realized through the implementation of new DNA marker platforms and targeted breeding technologies, including genome editing

    Functions of LIM proteins in cell polarity and chemotactic motility

    No full text
    LimC and LimD are two novel LIM proteins of Dictyostelium, which are comprised of double and single LIM domains, respectively. Green fluorescent protein-fused LimC and LimD proteins preferentially accumulate at areas of the cell cortex where they co-localize with actin and associate transiently with cytoskeleton-dependent dynamic structures like phagosomes, macropinosomes and pseudopods. Furthermore, both LimC and LimD interact directly with F-actin in vitro. Mutant cells that lack either LimC or LimD, or both, exhibit normal growth. They are, however, significantly impaired in growth under stress conditions and are highly sensitive to osmotic shock, suggesting that LimC and LimD contribute towards the maintenance of cortical strength. Moreover, we noted an altered morphology and F-actin distribution in LimD(–) and LimC(–)/D(–) mutants, and changes in chemotactic motility associated with an increased pseudopod formation. Our results reveal both unique and overlapping roles for LimC and LimD, and suggest that both act directly on the actin cytoskeleton and provide rigidity to the cortex

    Evaluation of four-terminal-pair capacitance standards using electrical equivalent circuit model

    No full text
    The reported work has been performed in order to establish the measurement traceability of high frequency capacitance standards at CSIR-NPL. In this context, four-terminal-pair air capacitance standards of Agilent 16380A type with nominal values of 1 pF, 10 pF, 100 pF and 1000 pF have been evaluated at a set of frequencies ranging from 10 kHz to 30 MHz. The evaluation procedure involves the determination of capacitive and inductive residual components of an electrical equivalent circuit model of these standards. The versatile measurement automation program has been developed to control the evaluation procedure and the functionality of the same has been discussed in the paper

    Evaluation of immune response to bovine rotavirus following oral and intraperitoneal inoculation in mice

    No full text
    212-216 With a view to use mice as an experimental model for studying immune response to bovine rotavirus (BRV), the kinetics of humoral and cellular immune responses to BRV in mice were evaluated by immunizing through intraperitoneal and oral route with UK strain of BRV. Following immunization with BRV, anti-rotavirus antibodies was developed in mice. The mean log antibody titres as measured by ELISA in mice immunized by intraperitoneal route were significantly higher than those immunized by oral route. Significant cellular immune response was observed in BRV-immunized mice on stimulation with BRV antigen, as measured by lymphocyte proliferation assay. The thymidine uptake by splenic and mesenteric lymph-node cells of intraperitoneally immunized mice on stimulation with BRV was 21328±1225 and 739±55 CPM, respectively. The splenic cells showed significantly higher stimulation (stimulation index 12.98) as compared to those of mesenteric cells (stimulation index 1.57). Foot pad inoculation test showed maximum virus-specific delayed type hypersensitivity reaction at 24 hr post-challenge following primary immunization and at 18 hr post-challenge following secondary immunization. The results indicate that BRV immunization by intraperitoneal route generates more efficient immune response in mice than by oral route and this route may be used for immune response studies involving BRV infection. </smarttagtype
    corecore