21 research outputs found
Comparative genomics of isolates of a pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients
Pseudomonas aeruginosa is the main cause of fatal chronic lung infections among individuals suffering from cystic fibrosis (CF). During the past 15 years, particularly aggressive strains transmitted among CF patients have been identified, initially in Europe and more recently in Canada. The aim of this study was to generate high-quality genome sequences for 7 isolates of the Liverpool epidemic strain (LES) from the United Kingdom and Canada representing different virulence characteristics in order to: (1) associate comparative genomics results with virulence factor variability and (2) identify genomic and/or phenotypic divergence between the two geographical locations. We performed phenotypic characterization of pyoverdine, pyocyanin, motility, biofilm formation, and proteolytic activity. We also assessed the degree of virulence using the Dictyostelium discoideum amoeba model. Comparative genomics analysis revealed at least one large deletion (40-50 kb) in 6 out of the 7 isolates compared to the reference genome of LESB58. These deletions correspond to prophages, which are known to increase the competitiveness of LESB58 in chronic lung infection. We also identified 308 non-synonymous polymorphisms, of which 28 were associated with virulence determinants and 52 with regulatory proteins. At the phenotypic level, isolates showed extensive variability in production of pyocyanin, pyoverdine, proteases and biofilm as well as in swimming motility, while being predominantly avirulent in the amoeba model. Isolates from the two continents were phylogenetically and phenotypically undistinguishable. Most regulatory mutations were isolate-specific and 29% of them were predicted to have high functional impact. Therefore, polymorphism in regulatory genes is likely to be an important basis for phenotypic diversity among LES isolates, which in turn might contribute to this strain's adaptability to varying conditions in the CF lung
Towards a Processual Microbial Ontology
types: ArticleStandard microbial evolutionary ontology is organized according to a
nested hierarchy of entities at various levels of biological organization. It typically
detects and defines these entities in relation to the most stable aspects of evolutionary
processes, by identifying lineages evolving by a process of vertical inheritance
from an ancestral entity. However, recent advances in microbiology indicate
that such an ontology has important limitations. The various dynamics detected
within microbiological systems reveal that a focus on the most stable entities (or
features of entities) over time inevitably underestimates the extent and nature of
microbial diversity. These dynamics are not the outcome of the process of vertical
descent alone. Other processes, often involving causal interactions between entities
from distinct levels of biological organisation, or operating at different time scales,
are responsible not only for the destabilisation of pre-existing entities, but also for
the emergence and stabilisation of novel entities in the microbial world. In this
article we consider microbial entities as more or less stabilised functional wholes,
and sketch a network-based ontology that can represent a diverse set of processes
including, for example, as well as phylogenetic relations, interactions that stabilise
or destabilise the interacting entities, spatial relations, ecological connections, and
genetic exchanges. We use this pluralistic framework for evaluating (i) the existing
ontological assumptions in evolution (e.g. whether currently recognized entities are
adequate for understanding the causes of change and stabilisation in the microbial
world), and (ii) for identifying hidden ontological kinds, essentially invisible from
within a more limited perspective. We propose to recognize additional classes of
entities that provide new insights into the structure of the microbial world, namely ‘‘processually equivalent’’ entities, ‘‘processually versatile’’ entities, and ‘‘stabilized’’
entities.Economic and Social Research Council, U
Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01
<p>Abstract</p> <p>Background</p> <p>Many strains of <it>Thermus </it>have been isolated from hot environments around the world. <it>Thermus scotoductus </it>SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different <it>Thermus thermophilus </it>strains have been completed. This paper represents the completed genome from a second <it>Thermus </it>species - <it>T. scotoductus</it>.</p> <p>Results</p> <p>The genome of <it>Thermus scotoductus </it>SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the <it>Thermus thermophilus </it>genomes. The <it>T. thermophilus </it>megaplasmid genes are part of the <it>T. scotoductus </it>chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of <it>T. scotoductus and T. thermophilus</it>. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from <it>Meiothermus ruber</it>. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of <it>Thermus scotoductus </it>was confirmed experimentally as expected as most of the proteins of the natural transformation system of <it>Thermus thermophilus </it>are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle.</p> <p>Conclusions</p> <p>The genome of <it>Thermus scotoductus </it>SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to <it>Thermus thermophilus</it>. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of <it>Thermus scotoductus </it>illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.</p
Mainstreams of Horizontal Gene Exchange in Enterobacteria: Consideration of the Outbreak of Enterohemorrhagic E. coli O104:H4 in Germany in 2011
Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods.status: publishe
SeqWord Gene Island Sniffer: A program to study the lateral genetic exchange among bacteria
SeqWord Gene Island Sniffer, a new program for the identification of mobile genetic elements in sequences of bacterial chromosomes is presented. This program is based on the analysis of oligonucleotide usage variations in DNA sequences. 3,518 mobile genetic elements were identified in 637 bacterial genomes and further analyzed by sequence similarity and the functionality of encoded proteins. The results of this study are stored in an open database (http://anjie.bi.up.ac.za/geidb/geidbhome. php). The developed computer program and the database provide the information valuable for further investigation of the distribution of mobile genetic elements and virulence factors among bacteria. The program is available for download at www.bi.up.ac.za/SeqWord/sniffer/index.html.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Whole Genome Sequence Comparisons in Taxonomy
Borriss R, Rückert C, Blom J, Bezuidt O, Reva O, Klenk HP. Whole Genome Sequence Comparisons in Taxonomy. In: Rainey F, Oren A, eds. Taxonomy of Prokaryotes (Methods in Microbiology). Methods in microbiology. Vol 38. Waltham, MA, USA: Academic Press,; 2011: 473