21 research outputs found

    Pinacol Rearrangement and Direct Nucleophilic Substitution of Allylic Alcohols Promoted by Graphene Oxide and Graphene Oxide CO2H

    Get PDF
    Graphene oxide (GO) and carboxylic acid functionalized GO (GO–CO2H) have been found to efficiently promote the heterogeneous and environmentally friendly pinacol rearrangement of 1,2-diols and the direct nucleophilic substitution of allylic alcohols. In general, high yields and regioselectivities are obtained in both reactions using 20 wt % of catalyst loading and mild reaction conditions.Financial support from the University of Alicante (UAUSTI16-03, VIGROB-173), and Spanish Ministerio de Economía y Competitividad (CTQ2015-66624-P) is acknowledged

    Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation

    No full text
    With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99%) under visible light irradiation at ambient temperature. Au/zeolite photocatalysts were characterized by UV/Vis, XPS, TEM, XRD, EDS, BET, IR, and Raman techniques. The Surface Plasmon Resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports, and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range, and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterization data and the photocatalytic performances, we proposed a possible photooxidation mechanism
    corecore